UltraFusion / app.py
iimmortall's picture
fix pycuda bugs
cece299
# -*- coding: utf-8 -*-
import os
import sys
import datetime
import gradio as gr
import numpy as np
from PIL import Image
import spaces #[uncomment to use ZeroGPU]
import torch
from torchvision.transforms import ToTensor, ToPILImage
# -------------------------- HuggingFace -------------------------------
from huggingface_hub import hf_hub_download, snapshot_download
model_name = "iimmortall/UltraFusion"
auth_token = os.getenv("HF_AUTH_TOKEN")
greet_file = hf_hub_download(repo_id=model_name, filename="main.py", use_auth_token=auth_token)
model_folder = snapshot_download(repo_id=model_name, token=auth_token, local_dir="/home/user/app")
from ultrafusion_utils import load_model, run_ultrafusion, check_input
PYCUDA_FLAG = True
try :
import pycuda
except Exception:
PYCUDA_FLAG = False
print("No pycuda!!!")
RUN_TIMES = 0
to_tensor = ToTensor()
to_pil = ToPILImage()
ultrafusion_pipe, flow_model = load_model()
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU(duration=60) #[uncomment to use ZeroGPU]
def infer(
under_expo_img,
over_expo_img,
num_inference_steps
):
print(under_expo_img.size)
print("reciving image")
under_expo_img_lr, over_expo_img_lr, under_expo_img, over_expo_img, use_bgu = check_input(under_expo_img, over_expo_img, max_l=1500)
global PYCUDA_FLAG
if not PYCUDA_FLAG and use_bgu:
print("No pycuda, do not run BGU.")
use_bgu = False
ue = to_tensor(under_expo_img_lr).unsqueeze(dim=0).to("cuda")
oe = to_tensor(over_expo_img_lr).unsqueeze(dim=0).to("cuda")
ue_hr = to_tensor(under_expo_img).unsqueeze(dim=0).to("cuda")
oe_hr = to_tensor(over_expo_img).unsqueeze(dim=0).to("cuda")
print("num_inference_steps:", num_inference_steps)
try:
if num_inference_steps is None:
num_inference_steps = 20
num_inference_steps = int(num_inference_steps)
except Exception as e:
num_inference_steps = 20
out = run_ultrafusion(ue, oe, ue_hr, oe_hr, use_bgu, 'test', flow_model=flow_model, pipe=ultrafusion_pipe, steps=num_inference_steps, consistent_start=None, test_bs=16)
out = out.clamp(0, 1).squeeze()
out_pil = to_pil(out)
global RUN_TIMES
RUN_TIMES = RUN_TIMES + 1
print("---------------------------- Using Times---------------------------------------")
print(f"{datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}: Using times: {RUN_TIMES}")
return out_pil
def build_demo():
examples= [
[os.path.join("examples", img_name, "ue.jpg"),
os.path.join("examples", img_name, "oe.jpg")] for img_name in sorted(os.listdir("examples"))
]
IMG_W = 320
IMG_H = 240
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
# max-heigh: 1500px;
_README_ = r"""
- This is an HDR algorithm that fuses two images with different exposures.
- This can fuse two images with a very large exposure difference, even up to 9 stops.
- The two input images should have the same resolution; otherwise, an error will be reported.
- We are committed to not storing any data you upload or the results of its processing.
"""
# - The maximum resolution we support is 1500 x 1500. If the images you upload are larger than this, they will be downscaled while maintaining the original aspect ratio.
# - This is only for internal testing. Do not share it publicly.
_CITE_ = r"""
πŸ“ **Citation**
If you find our work useful for your research or applications, please cite using this bibtex:
```bibtex
@article{xxx,
title={xxx},
author={xxx},
journal={arXiv preprint arXiv:xx.xx},
year={2024}
}
```
πŸ“‹ **License**
CC BY-NC 4.0. LICENSE.
πŸ“§ **Contact**
If you have any questions, feel free to open a discussion or contact us at <b>xxx@gmail.com</b>.
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""<h1 style="text-align: center; font-size: 32px;"><b>UltraFusion for HDR πŸ“Έβœ¨</b></h1>""")
# gr.Markdown("""<h1 style="text-align: center; font-size: 32px;"><b>OpenImagingLab</b></h1>""")
gr.Markdown("""<h1 style="text-align: center; font-size: 24px;"><b>How do I use it?</b></h1>""")
with gr.Row():
gr.Image("ui/en-short.png", width=IMG_W//3, show_label=False, interactive=False, show_download_button=False)
gr.Image("ui/en-long.png", width=IMG_W//3, show_label=False, interactive=False, show_download_button=False)
gr.Image("ui/en-run.png", width=IMG_W//3, show_label=False, interactive=False, show_download_button=False)
with gr.Row():
gr.Markdown("""<h1 style="text-align: center; font-size: 12px;"><b>βž€ Tap the center of the camera screen, then drag the β˜€οΈŽ icon downward to capture a photo with a shorter exposure.</b></h1>""")
gr.Markdown("""<h1 style="text-align: center; font-size: 12px;"><b>➁ Tap the center of the camera screen, then drag the β˜€οΈŽ icon upward to capture a photo with a longer exposure.</b></h1>""")
gr.Markdown("""<h1 style="text-align: center; font-size: 12px;"><b>βž‚ Upload the short and long exposure images, then click the 'Run' button to receive the result. </b></h1>""")
gr.Markdown("""<h1 style="text-align: center; font-size: 24px;"><b>Enjoy it!</b></h1>""")
with gr.Row():
under_expo_img = gr.Image(label="Short Exposure Image", show_label=True,
image_mode="RGB",
sources=["upload", ],
width=IMG_W,
height=IMG_H,
type="pil"
)
over_expo_img = gr.Image(label="Long Exposure Image", show_label=True,
image_mode="RGB",
sources=["upload", ],
width=IMG_W,
height=IMG_H,
type="pil"
)
with gr.Row():
run_button = gr.Button("Run", variant="primary") # scale=0,
result = gr.Image(label="Result", show_label=True,
type='pil',
image_mode='RGB',
format="png",
width=IMG_W*2,
height=IMG_H*2,
)
gr.Markdown(r"""<h1 style="text-align: center; font-size: 18px;"><b>Like it? Click the button πŸ“₯ on the image to download.</b></h1>""") # width="100" height="100" <img src="ui/download.svg" alt="download">
with gr.Accordion("Advanced Settings", open=True):
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=2,
maximum=50,
step=1,
value=20, # Replace with defaults that work for your model
interactive=True
)
gr.Examples(
examples=examples,
inputs=[under_expo_img, over_expo_img, num_inference_steps],
label="Examples",
# examples_per_page=10,
fn=infer,
cache_examples=True,
outputs=[result,],
)
gr.Markdown(_README_)
# gr.Markdown(_CITE_)
run_button.click(fn=infer,
inputs=[under_expo_img, over_expo_img, num_inference_steps],
outputs=[result,],
)
return demo
if __name__ == "__main__":
demo = build_demo()
demo.queue(max_size=10)
demo.launch(share=True)
# demo.launch(server_name="0.0.0.0", debug=True, show_api=True, show_error=True, share=False)