Spaces:
Sleeping
Sleeping
Upload 6 files
Browse files- .gitattributes +4 -0
- app.py +193 -116
- examples/0052/oe.jpg +3 -0
- examples/0052/ue.jpg +3 -0
- examples/0072/oe.jpg +3 -0
- examples/0072/ue.jpg +3 -0
- requirements.txt +14 -14
.gitattributes
CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
examples/0052/oe.jpg filter=lfs diff=lfs merge=lfs -text
|
37 |
+
examples/0052/ue.jpg filter=lfs diff=lfs merge=lfs -text
|
38 |
+
examples/0072/oe.jpg filter=lfs diff=lfs merge=lfs -text
|
39 |
+
examples/0072/ue.jpg filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
@@ -1,154 +1,231 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
-
|
5 |
-
#
|
6 |
-
from diffusers import DiffusionPipeline
|
7 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
-
model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
|
11 |
-
|
12 |
if torch.cuda.is_available():
|
13 |
torch_dtype = torch.float16
|
14 |
else:
|
15 |
torch_dtype = torch.float32
|
16 |
|
17 |
-
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
18 |
-
pipe = pipe.to(device)
|
19 |
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
MAX_IMAGE_SIZE = 1024
|
22 |
|
23 |
-
|
24 |
-
# @spaces.GPU #[uncomment to use ZeroGPU]
|
25 |
def infer(
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
randomize_seed,
|
30 |
-
width,
|
31 |
-
height,
|
32 |
-
guidance_scale,
|
33 |
-
num_inference_steps,
|
34 |
-
progress=gr.Progress(track_tqdm=True),
|
35 |
):
|
36 |
-
if randomize_seed:
|
37 |
-
|
|
|
38 |
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
negative_prompt=negative_prompt,
|
44 |
-
guidance_scale=guidance_scale,
|
45 |
-
num_inference_steps=num_inference_steps,
|
46 |
-
width=width,
|
47 |
-
height=height,
|
48 |
-
generator=generator,
|
49 |
-
).images[0]
|
50 |
|
51 |
-
|
|
|
52 |
|
|
|
|
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
css = """
|
61 |
#col-container {
|
62 |
margin: 0 auto;
|
63 |
max-width: 640px;
|
64 |
}
|
65 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
|
68 |
-
with gr.Column(elem_id="col-container"):
|
69 |
-
gr.Markdown(" # Text-to-Image Gradio Template")
|
70 |
|
71 |
-
|
72 |
-
prompt = gr.Text(
|
73 |
-
label="Prompt",
|
74 |
-
show_label=False,
|
75 |
-
max_lines=1,
|
76 |
-
placeholder="Enter your prompt",
|
77 |
-
container=False,
|
78 |
-
)
|
79 |
|
80 |
-
|
81 |
|
82 |
-
|
|
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
90 |
)
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
value=0,
|
98 |
)
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
|
153 |
if __name__ == "__main__":
|
154 |
-
demo.
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
6 |
import random
|
7 |
+
import spaces #[uncomment to use ZeroGPU]
|
8 |
+
# from diffusers import DiffusionPipeline
|
|
|
9 |
import torch
|
10 |
+
from torchvision.transforms import ToTensor, ToPILImage
|
11 |
+
import logging
|
12 |
+
logging.getLogger("huggingface_hub").setLevel(logging.CRITICAL)
|
13 |
+
from huggingface_hub import hf_hub_download, snapshot_download
|
14 |
+
|
15 |
+
model_name = "iimmortall/UltraFusion"
|
16 |
+
auth_token = os.getenv("HF_AUTH_TOKEN")
|
17 |
+
# print(auth_token)
|
18 |
+
# greet_file = hf_hub_download(repo_id=model_name, filename="main.py", use_auth_token=auth_token)
|
19 |
+
# sys.path.append(os.path.split(greet_file)[0])
|
20 |
+
model_folder = snapshot_download(repo_id=model_name, token=auth_token)
|
21 |
+
# sys.path.append(model_folder)
|
22 |
+
sys.path.insert(0, model_folder)
|
23 |
+
print(sys.path)
|
24 |
+
# exit()
|
25 |
+
|
26 |
+
from ultrafusion_utils import load_model, run_ultrafusion
|
27 |
+
|
28 |
+
to_tensor = ToTensor()
|
29 |
+
to_pil = ToPILImage()
|
30 |
+
ultrafusion_pipe, flow_model = load_model()
|
31 |
|
32 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
33 |
if torch.cuda.is_available():
|
34 |
torch_dtype = torch.float16
|
35 |
else:
|
36 |
torch_dtype = torch.float32
|
37 |
|
|
|
|
|
38 |
|
39 |
MAX_SEED = np.iinfo(np.int32).max
|
40 |
MAX_IMAGE_SIZE = 1024
|
41 |
|
42 |
+
@spaces.GPU(duration=10) #[uncomment to use ZeroGPU]
|
|
|
43 |
def infer(
|
44 |
+
under_expo_img,
|
45 |
+
over_expo_img,
|
46 |
+
# progress=gr.Progress(track_tqdm=True),
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
):
|
48 |
+
# if randomize_seed:
|
49 |
+
# seed = random.randint(0, MAX_SEED)
|
50 |
+
# generator = torch.Generator().manual_seed(seed)
|
51 |
|
52 |
+
# image = pipe(
|
53 |
+
# prompt=prompt,
|
54 |
+
# negative_prompt=negative_prompt,
|
55 |
+
# guidance_scale=guidance_scale,
|
56 |
+
# num_inference_steps=num_inference_steps,
|
57 |
+
# width=width,
|
58 |
+
# height=height,
|
59 |
+
# generator=generator,
|
60 |
+
# ).images[0]
|
61 |
|
62 |
+
print(under_expo_img.size)
|
63 |
+
print("reciving image")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
+
under_expo_img = under_expo_img.resize([1500, 1000])
|
66 |
+
over_expo_img = over_expo_img.resize([1500, 1000])
|
67 |
|
68 |
+
ue = to_tensor(under_expo_img).unsqueeze(dim=0).to("cuda")
|
69 |
+
oe = to_tensor(over_expo_img).unsqueeze(dim=0).to("cuda")
|
70 |
|
71 |
+
out = run_ultrafusion(ue, oe, 'test', flow_model=flow_model, pipe=ultrafusion_pipe, consistent_start=None)
|
72 |
+
|
73 |
+
out = out.clamp(0, 1).squeeze()
|
74 |
+
out_pil = to_pil(out)
|
75 |
+
|
76 |
+
return out_pil
|
77 |
|
78 |
+
|
79 |
+
examples= [
|
80 |
+
[os.path.join("examples", img_name, "ue.jpg"),
|
81 |
+
os.path.join("examples", img_name, "oe.jpg")] for img_name in sorted(os.listdir("examples"))
|
82 |
+
]
|
83 |
+
IMG_W = 320
|
84 |
+
IMG_H = 240
|
85 |
css = """
|
86 |
#col-container {
|
87 |
margin: 0 auto;
|
88 |
max-width: 640px;
|
89 |
}
|
90 |
"""
|
91 |
+
# max-heigh: 1500px;
|
92 |
+
|
93 |
+
_HEADER_ = '''
|
94 |
+
<h2><b>Official 🤗 UltraHDR Demo</b></h2><h2><a href='' target='_blank'><b>UltraHDR: xxx</b></a></h2>
|
95 |
+
'''
|
96 |
+
|
97 |
+
_CITE_ = r"""
|
98 |
+
📝 **Citation**
|
99 |
+
|
100 |
+
If you find our work useful for your research or applications, please cite using this bibtex:
|
101 |
+
```bibtex
|
102 |
+
@article{xxx,
|
103 |
+
title={xxx},
|
104 |
+
author={xxx},
|
105 |
+
journal={arXiv preprint arXiv:xx.xx},
|
106 |
+
year={2024}
|
107 |
+
}
|
108 |
+
```
|
109 |
|
110 |
+
📋 **License**
|
|
|
|
|
111 |
|
112 |
+
CC BY-NC 4.0. LICENSE.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
+
📧 **Contact**
|
115 |
|
116 |
+
If you have any questions, feel free to open a discussion or contact us at <b>xxx@gmail.com</b>.
|
117 |
+
"""
|
118 |
|
119 |
+
with gr.Blocks(css=css) as demo:
|
120 |
+
with gr.Column(elem_id="col-container"):
|
121 |
+
gr.Markdown(" # UltraHDR")
|
122 |
+
with gr.Row():
|
123 |
+
under_expo_img = gr.Image(label="UnderExposureImage", show_label=True,
|
124 |
+
image_mode="RGB",
|
125 |
+
sources=["upload", ],
|
126 |
+
width=IMG_W,
|
127 |
+
height=IMG_H,
|
128 |
+
type="pil"
|
129 |
)
|
130 |
+
over_expo_img = gr.Image(label="OverExposureImage", show_label=True,
|
131 |
+
image_mode="RGB",
|
132 |
+
sources=["upload", ],
|
133 |
+
width=IMG_W,
|
134 |
+
height=IMG_H,
|
135 |
+
type="pil"
|
|
|
136 |
)
|
137 |
+
with gr.Row():
|
138 |
+
run_button = gr.Button("Run", variant="primary") # scale=0,
|
139 |
+
|
140 |
+
result = gr.Image(label="Result", show_label=True,
|
141 |
+
type='pil',
|
142 |
+
image_mode='RGB',
|
143 |
+
format="png",
|
144 |
+
width=IMG_W*2,
|
145 |
+
height=IMG_H*2,
|
146 |
+
)
|
147 |
+
|
148 |
+
# with gr.Row():
|
149 |
+
# prompt = gr.Text(
|
150 |
+
# label="Prompt",
|
151 |
+
# show_label=False,
|
152 |
+
# max_lines=1,
|
153 |
+
# placeholder="Enter your prompt",
|
154 |
+
# container=False,
|
155 |
+
# )
|
156 |
+
# negative_prompt = gr.Text(
|
157 |
+
# label="Negative prompt",
|
158 |
+
# max_lines=1,
|
159 |
+
# placeholder="Enter a negative prompt",
|
160 |
+
# visible=False,
|
161 |
+
# )
|
162 |
+
# with gr.Accordion("Advanced Settings", open=False):
|
163 |
+
# negative_prompt = gr.Text(
|
164 |
+
# label="Negative prompt",
|
165 |
+
# max_lines=1,
|
166 |
+
# placeholder="Enter a negative prompt",
|
167 |
+
# visible=False,
|
168 |
+
# )
|
169 |
+
|
170 |
+
# seed = gr.Slider(
|
171 |
+
# label="Seed",
|
172 |
+
# minimum=0,
|
173 |
+
# maximum=MAX_SEED,
|
174 |
+
# step=1,
|
175 |
+
# value=0,
|
176 |
+
# )
|
177 |
+
|
178 |
+
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
179 |
+
|
180 |
+
# with gr.Row():
|
181 |
+
# width = gr.Slider(
|
182 |
+
# label="Width",
|
183 |
+
# minimum=256,
|
184 |
+
# maximum=MAX_IMAGE_SIZE,
|
185 |
+
# step=32,
|
186 |
+
# value=1024, # Replace with defaults that work for your model
|
187 |
+
# )
|
188 |
+
|
189 |
+
# height = gr.Slider(
|
190 |
+
# label="Height",
|
191 |
+
# minimum=256,
|
192 |
+
# maximum=MAX_IMAGE_SIZE,
|
193 |
+
# step=32,
|
194 |
+
# value=1024, # Replace with defaults that work for your model
|
195 |
+
# )
|
196 |
+
|
197 |
+
# with gr.Row():
|
198 |
+
# guidance_scale = gr.Slider(
|
199 |
+
# label="Guidance scale",
|
200 |
+
# minimum=0.0,
|
201 |
+
# maximum=10.0,
|
202 |
+
# step=0.1,
|
203 |
+
# value=0.0, # Replace with defaults that work for your model
|
204 |
+
# )
|
205 |
+
|
206 |
+
# num_inference_steps = gr.Slider(
|
207 |
+
# label="Number of inference steps",
|
208 |
+
# minimum=1,
|
209 |
+
# maximum=50,
|
210 |
+
# step=1,
|
211 |
+
# value=2, # Replace with defaults that work for your model
|
212 |
+
# )
|
213 |
+
|
214 |
+
gr.Examples(
|
215 |
+
examples=examples,
|
216 |
+
inputs=[under_expo_img, over_expo_img],
|
217 |
+
label="Examples",
|
218 |
+
# examples_per_page=10,
|
219 |
+
cache_examples=False,
|
220 |
+
# fn=infer,
|
221 |
+
)
|
222 |
+
# gr.Markdown(_CITE_)
|
223 |
+
run_button.click(fn=infer,
|
224 |
+
inputs=[under_expo_img, over_expo_img],
|
225 |
+
outputs=[result,],
|
226 |
+
)
|
227 |
|
228 |
if __name__ == "__main__":
|
229 |
+
demo.queue(max_size=10)
|
230 |
+
demo.launch(share=True)
|
231 |
+
# demo.launch(server_name="0.0.0.0", debug=True, show_api=True, show_error=True, share=False)
|
examples/0052/oe.jpg
ADDED
![]() |
Git LFS Details
|
examples/0052/ue.jpg
ADDED
![]() |
Git LFS Details
|
examples/0072/oe.jpg
ADDED
![]() |
Git LFS Details
|
examples/0072/ue.jpg
ADDED
![]() |
Git LFS Details
|
requirements.txt
CHANGED
@@ -1,15 +1,15 @@
|
|
1 |
-
accelerate
|
2 |
-
diffusers
|
3 |
-
invisible_watermark
|
4 |
-
transformers
|
5 |
-
xformers
|
6 |
-
torch==2.4.1
|
7 |
-
torchvision==0.19.1
|
8 |
-
omegaconf
|
9 |
-
numpy
|
10 |
-
pillow
|
11 |
-
einops
|
12 |
-
scipy
|
13 |
-
numpy
|
14 |
-
ftfy
|
15 |
pytorch_lightning==2.4
|
|
|
1 |
+
accelerate
|
2 |
+
diffusers
|
3 |
+
invisible_watermark
|
4 |
+
transformers
|
5 |
+
xformers
|
6 |
+
torch==2.4.1
|
7 |
+
torchvision==0.19.1
|
8 |
+
omegaconf
|
9 |
+
numpy
|
10 |
+
pillow
|
11 |
+
einops
|
12 |
+
scipy
|
13 |
+
numpy
|
14 |
+
ftfy
|
15 |
pytorch_lightning==2.4
|