Create stremlit_app.py
Browse files- stremlit_app.py +44 -0
stremlit_app.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
from transformers import pipeline
|
4 |
+
|
5 |
+
# Load the pre-trained model
|
6 |
+
classifier = pipeline("image-classification", model="https://teachablemachine.withgoogle.com/models/lcNO3nb0s/")
|
7 |
+
|
8 |
+
st.title("Korean Jelly Identifier")
|
9 |
+
|
10 |
+
uploaded_file = st.file_uploader("Choose an image...", type="jpg")
|
11 |
+
|
12 |
+
if uploaded_file is not None:
|
13 |
+
image = Image.open(uploaded_file)
|
14 |
+
st.image(image, caption='Uploaded Image.', use_column_width=True)
|
15 |
+
st.write("")
|
16 |
+
st.write("Classifying...")
|
17 |
+
|
18 |
+
# Classify the image
|
19 |
+
results = classifier(image)
|
20 |
+
|
21 |
+
jelly_type = results[0]['label']
|
22 |
+
sugar_level = get_sugar_level(jelly_type)
|
23 |
+
hazard = get_hazard_level(sugar_level)
|
24 |
+
|
25 |
+
st.write(f'Jelly Type: {jelly_type}')
|
26 |
+
st.write(f'Sugar Level: {sugar_level}')
|
27 |
+
st.write(f'Hazard: {hazard}')
|
28 |
+
|
29 |
+
def get_sugar_level(jelly_type):
|
30 |
+
# Dummy data for demonstration purposes
|
31 |
+
sugar_data = {
|
32 |
+
'jellyA': 10,
|
33 |
+
'jellyB': 20,
|
34 |
+
'jellyC': 30
|
35 |
+
}
|
36 |
+
return sugar_data.get(jelly_type, 0)
|
37 |
+
|
38 |
+
def get_hazard_level(sugar_level):
|
39 |
+
if sugar_level > 25:
|
40 |
+
return 'Red (High Hazard)'
|
41 |
+
elif sugar_level > 15:
|
42 |
+
return 'Yellow (Moderate Hazard)'
|
43 |
+
else:
|
44 |
+
return 'Green (Low Hazard)'
|