ilhamsyahids commited on
Commit
be74b55
·
1 Parent(s): 18f7052

normalized cosine sim to be between 0 and 1

Browse files

Signed-off-by: Ilham Syahid S <ilhamsyahids@gmail.com>

Files changed (1) hide show
  1. app.py +12 -5
app.py CHANGED
@@ -34,8 +34,15 @@ def calculate_similarities(model, text, *sentences):
34
 
35
  # calculate cosine similarity between the input text and the input sentences
36
  similarities = {}
 
 
 
 
 
37
  for sentence, sentence_embedding in zip(sentences, sentences_embeddings):
38
- similarities[sentence] = cos_sim(text_embedding, sentence_embedding)
 
 
39
 
40
  return similarities
41
 
@@ -70,12 +77,12 @@ with demo:
70
  gr.Examples(
71
  examples=[
72
  ["roberta", "This is happy person", "هذا شخص سعيد", "هذه قطة سعيدة"],
73
- ["roberta", "car", "camry", "toyota"],
74
- ["roberta", "هذا شخص سعيد", "هذه قطة سعيدة", "This is happy person"],
75
- ["roberta", "ihpone for sale", "iphone for sale", "camry for sale"],
76
- ["ada", "camry", "toy", "toyota"],
77
  ["ada", "This is happy person", "هذا شخص سعيد", "هذه قطة سعيدة"],
 
78
  ["ada", "هذا شخص سعيد", "هذه قطة سعيدة", "This is happy person"],
 
 
 
79
  ["ada", "ihpone for sale", "iphone for sale", "camry for sale"],
80
  ],
81
  inputs=[model, text, *inp_sentences],
 
34
 
35
  # calculate cosine similarity between the input text and the input sentences
36
  similarities = {}
37
+
38
+ # to normalize cosine similarity to be between 0 and 1
39
+ minx = -1
40
+ maxx = 1
41
+
42
  for sentence, sentence_embedding in zip(sentences, sentences_embeddings):
43
+ sim = cos_sim(text_embedding, sentence_embedding)
44
+ normalized_sim = (sim - minx) / (maxx - minx)
45
+ similarities[sentence] = normalized_sim
46
 
47
  return similarities
48
 
 
77
  gr.Examples(
78
  examples=[
79
  ["roberta", "This is happy person", "هذا شخص سعيد", "هذه قطة سعيدة"],
 
 
 
 
80
  ["ada", "This is happy person", "هذا شخص سعيد", "هذه قطة سعيدة"],
81
+ ["roberta", "هذا شخص سعيد", "هذه قطة سعيدة", "This is happy person"],
82
  ["ada", "هذا شخص سعيد", "هذه قطة سعيدة", "This is happy person"],
83
+ ["roberta", "car", "camry", "toyota"],
84
+ ["ada", "camry", "toy", "toyota"],
85
+ ["roberta", "ihpone for sale", "iphone for sale", "camry for sale"],
86
  ["ada", "ihpone for sale", "iphone for sale", "camry for sale"],
87
  ],
88
  inputs=[model, text, *inp_sentences],