Spaces:
Sleeping
Sleeping
import torch | |
from typing import Callable, Protocol, TypedDict, Optional, List | |
class UnetApplyFunction(Protocol): | |
"""Function signature protocol on comfy.model_base.BaseModel.apply_model""" | |
def __call__(self, x: torch.Tensor, t: torch.Tensor, **kwargs) -> torch.Tensor: | |
pass | |
class UnetApplyConds(TypedDict): | |
"""Optional conditions for unet apply function.""" | |
c_concat: Optional[torch.Tensor] | |
c_crossattn: Optional[torch.Tensor] | |
control: Optional[torch.Tensor] | |
transformer_options: Optional[dict] | |
class UnetParams(TypedDict): | |
# Tensor of shape [B, C, H, W] | |
input: torch.Tensor | |
# Tensor of shape [B] | |
timestep: torch.Tensor | |
c: UnetApplyConds | |
# List of [0, 1], [0], [1], ... | |
# 0 means conditional, 1 means conditional unconditional | |
cond_or_uncond: List[int] | |
UnetWrapperFunction = Callable[[UnetApplyFunction, UnetParams], torch.Tensor] | |