Spaces:
Sleeping
Sleeping
import torch | |
from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule | |
import math | |
class EPS: | |
def calculate_input(self, sigma, noise): | |
sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1)) | |
return noise / (sigma ** 2 + self.sigma_data ** 2) ** 0.5 | |
def calculate_denoised(self, sigma, model_output, model_input): | |
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1)) | |
return model_input - model_output * sigma | |
def noise_scaling(self, sigma, noise, latent_image, max_denoise=False): | |
if max_denoise: | |
noise = noise * torch.sqrt(1.0 + sigma ** 2.0) | |
else: | |
noise = noise * sigma | |
noise += latent_image | |
return noise | |
def inverse_noise_scaling(self, sigma, latent): | |
return latent | |
class V_PREDICTION(EPS): | |
def calculate_denoised(self, sigma, model_output, model_input): | |
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1)) | |
return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) - model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5 | |
class EDM(V_PREDICTION): | |
def calculate_denoised(self, sigma, model_output, model_input): | |
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1)) | |
return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) + model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5 | |
class CONST: | |
def calculate_input(self, sigma, noise): | |
return noise | |
def calculate_denoised(self, sigma, model_output, model_input): | |
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1)) | |
return model_input - model_output * sigma | |
def noise_scaling(self, sigma, noise, latent_image, max_denoise=False): | |
return sigma * noise + (1.0 - sigma) * latent_image | |
def inverse_noise_scaling(self, sigma, latent): | |
return latent / (1.0 - sigma) | |
class ModelSamplingDiscrete(torch.nn.Module): | |
def __init__(self, model_config=None): | |
super().__init__() | |
if model_config is not None: | |
sampling_settings = model_config.sampling_settings | |
else: | |
sampling_settings = {} | |
beta_schedule = sampling_settings.get("beta_schedule", "linear") | |
linear_start = sampling_settings.get("linear_start", 0.00085) | |
linear_end = sampling_settings.get("linear_end", 0.012) | |
self._register_schedule(given_betas=None, beta_schedule=beta_schedule, timesteps=1000, linear_start=linear_start, linear_end=linear_end, cosine_s=8e-3) | |
self.sigma_data = 1.0 | |
def _register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000, | |
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): | |
if given_betas is not None: | |
betas = given_betas | |
else: | |
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s) | |
alphas = 1. - betas | |
alphas_cumprod = torch.cumprod(alphas, dim=0) | |
timesteps, = betas.shape | |
self.num_timesteps = int(timesteps) | |
self.linear_start = linear_start | |
self.linear_end = linear_end | |
# self.register_buffer('betas', torch.tensor(betas, dtype=torch.float32)) | |
# self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32)) | |
# self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32)) | |
sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5 | |
self.set_sigmas(sigmas) | |
def set_sigmas(self, sigmas): | |
self.register_buffer('sigmas', sigmas.float()) | |
self.register_buffer('log_sigmas', sigmas.log().float()) | |
def sigma_min(self): | |
return self.sigmas[0] | |
def sigma_max(self): | |
return self.sigmas[-1] | |
def timestep(self, sigma): | |
log_sigma = sigma.log() | |
dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None] | |
return dists.abs().argmin(dim=0).view(sigma.shape).to(sigma.device) | |
def sigma(self, timestep): | |
t = torch.clamp(timestep.float().to(self.log_sigmas.device), min=0, max=(len(self.sigmas) - 1)) | |
low_idx = t.floor().long() | |
high_idx = t.ceil().long() | |
w = t.frac() | |
log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx] | |
return log_sigma.exp().to(timestep.device) | |
def percent_to_sigma(self, percent): | |
if percent <= 0.0: | |
return 999999999.9 | |
if percent >= 1.0: | |
return 0.0 | |
percent = 1.0 - percent | |
return self.sigma(torch.tensor(percent * 999.0)).item() | |
class ModelSamplingDiscreteEDM(ModelSamplingDiscrete): | |
def timestep(self, sigma): | |
return 0.25 * sigma.log() | |
def sigma(self, timestep): | |
return (timestep / 0.25).exp() | |
class ModelSamplingContinuousEDM(torch.nn.Module): | |
def __init__(self, model_config=None): | |
super().__init__() | |
if model_config is not None: | |
sampling_settings = model_config.sampling_settings | |
else: | |
sampling_settings = {} | |
sigma_min = sampling_settings.get("sigma_min", 0.002) | |
sigma_max = sampling_settings.get("sigma_max", 120.0) | |
sigma_data = sampling_settings.get("sigma_data", 1.0) | |
self.set_parameters(sigma_min, sigma_max, sigma_data) | |
def set_parameters(self, sigma_min, sigma_max, sigma_data): | |
self.sigma_data = sigma_data | |
sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), 1000).exp() | |
self.register_buffer('sigmas', sigmas) #for compatibility with some schedulers | |
self.register_buffer('log_sigmas', sigmas.log()) | |
def sigma_min(self): | |
return self.sigmas[0] | |
def sigma_max(self): | |
return self.sigmas[-1] | |
def timestep(self, sigma): | |
return 0.25 * sigma.log() | |
def sigma(self, timestep): | |
return (timestep / 0.25).exp() | |
def percent_to_sigma(self, percent): | |
if percent <= 0.0: | |
return 999999999.9 | |
if percent >= 1.0: | |
return 0.0 | |
percent = 1.0 - percent | |
log_sigma_min = math.log(self.sigma_min) | |
return math.exp((math.log(self.sigma_max) - log_sigma_min) * percent + log_sigma_min) | |
class ModelSamplingContinuousV(ModelSamplingContinuousEDM): | |
def timestep(self, sigma): | |
return sigma.atan() / math.pi * 2 | |
def sigma(self, timestep): | |
return (timestep * math.pi / 2).tan() | |
def time_snr_shift(alpha, t): | |
if alpha == 1.0: | |
return t | |
return alpha * t / (1 + (alpha - 1) * t) | |
class ModelSamplingDiscreteFlow(torch.nn.Module): | |
def __init__(self, model_config=None): | |
super().__init__() | |
if model_config is not None: | |
sampling_settings = model_config.sampling_settings | |
else: | |
sampling_settings = {} | |
self.set_parameters(shift=sampling_settings.get("shift", 1.0)) | |
def set_parameters(self, shift=1.0, timesteps=1000): | |
self.shift = shift | |
ts = self.sigma(torch.arange(1, timesteps + 1, 1)) | |
self.register_buffer('sigmas', ts) | |
def sigma_min(self): | |
return self.sigmas[0] | |
def sigma_max(self): | |
return self.sigmas[-1] | |
def timestep(self, sigma): | |
return sigma * 1000 | |
def sigma(self, timestep): | |
return time_snr_shift(self.shift, timestep / 1000) | |
def percent_to_sigma(self, percent): | |
if percent <= 0.0: | |
return 1.0 | |
if percent >= 1.0: | |
return 0.0 | |
return 1.0 - percent | |
class StableCascadeSampling(ModelSamplingDiscrete): | |
def __init__(self, model_config=None): | |
super().__init__() | |
if model_config is not None: | |
sampling_settings = model_config.sampling_settings | |
else: | |
sampling_settings = {} | |
self.set_parameters(sampling_settings.get("shift", 1.0)) | |
def set_parameters(self, shift=1.0, cosine_s=8e-3): | |
self.shift = shift | |
self.cosine_s = torch.tensor(cosine_s) | |
self._init_alpha_cumprod = torch.cos(self.cosine_s / (1 + self.cosine_s) * torch.pi * 0.5) ** 2 | |
#This part is just for compatibility with some schedulers in the codebase | |
self.num_timesteps = 10000 | |
sigmas = torch.empty((self.num_timesteps), dtype=torch.float32) | |
for x in range(self.num_timesteps): | |
t = (x + 1) / self.num_timesteps | |
sigmas[x] = self.sigma(t) | |
self.set_sigmas(sigmas) | |
def sigma(self, timestep): | |
alpha_cumprod = (torch.cos((timestep + self.cosine_s) / (1 + self.cosine_s) * torch.pi * 0.5) ** 2 / self._init_alpha_cumprod) | |
if self.shift != 1.0: | |
var = alpha_cumprod | |
logSNR = (var/(1-var)).log() | |
logSNR += 2 * torch.log(1.0 / torch.tensor(self.shift)) | |
alpha_cumprod = logSNR.sigmoid() | |
alpha_cumprod = alpha_cumprod.clamp(0.0001, 0.9999) | |
return ((1 - alpha_cumprod) / alpha_cumprod) ** 0.5 | |
def timestep(self, sigma): | |
var = 1 / ((sigma * sigma) + 1) | |
var = var.clamp(0, 1.0) | |
s, min_var = self.cosine_s.to(var.device), self._init_alpha_cumprod.to(var.device) | |
t = (((var * min_var) ** 0.5).acos() / (torch.pi * 0.5)) * (1 + s) - s | |
return t | |
def percent_to_sigma(self, percent): | |
if percent <= 0.0: | |
return 999999999.9 | |
if percent >= 1.0: | |
return 0.0 | |
percent = 1.0 - percent | |
return self.sigma(torch.tensor(percent)) | |