Spaces:
Sleeping
Sleeping
import torch | |
from nodes import MAX_RESOLUTION | |
class CLIPTextEncodeSDXLRefiner: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"ascore": ("FLOAT", {"default": 6.0, "min": 0.0, "max": 1000.0, "step": 0.01}), | |
"width": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}), | |
"height": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}), | |
"text": ("STRING", {"multiline": True, "dynamicPrompts": True}), "clip": ("CLIP", ), | |
}} | |
RETURN_TYPES = ("CONDITIONING",) | |
FUNCTION = "encode" | |
CATEGORY = "advanced/conditioning" | |
def encode(self, clip, ascore, width, height, text): | |
tokens = clip.tokenize(text) | |
cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True) | |
return ([[cond, {"pooled_output": pooled, "aesthetic_score": ascore, "width": width,"height": height}]], ) | |
class CLIPTextEncodeSDXL: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"width": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}), | |
"height": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}), | |
"crop_w": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION}), | |
"crop_h": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION}), | |
"target_width": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}), | |
"target_height": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}), | |
"text_g": ("STRING", {"multiline": True, "dynamicPrompts": True}), "clip": ("CLIP", ), | |
"text_l": ("STRING", {"multiline": True, "dynamicPrompts": True}), "clip": ("CLIP", ), | |
}} | |
RETURN_TYPES = ("CONDITIONING",) | |
FUNCTION = "encode" | |
CATEGORY = "advanced/conditioning" | |
def encode(self, clip, width, height, crop_w, crop_h, target_width, target_height, text_g, text_l): | |
tokens = clip.tokenize(text_g) | |
tokens["l"] = clip.tokenize(text_l)["l"] | |
if len(tokens["l"]) != len(tokens["g"]): | |
empty = clip.tokenize("") | |
while len(tokens["l"]) < len(tokens["g"]): | |
tokens["l"] += empty["l"] | |
while len(tokens["l"]) > len(tokens["g"]): | |
tokens["g"] += empty["g"] | |
cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True) | |
return ([[cond, {"pooled_output": pooled, "width": width, "height": height, "crop_w": crop_w, "crop_h": crop_h, "target_width": target_width, "target_height": target_height}]], ) | |
NODE_CLASS_MAPPINGS = { | |
"CLIPTextEncodeSDXLRefiner": CLIPTextEncodeSDXLRefiner, | |
"CLIPTextEncodeSDXL": CLIPTextEncodeSDXL, | |
} | |