from transformers import T5Tokenizer, T5ForConditionalGeneration from sentence_transformers import SentenceTransformer from pinecone import Pinecone device = 'cpu' # Calling the pinecone api pc = Pinecone(api_key='89eeb534-da10-4068-92f7-12eddeabe1e5') # Connect to the Pinecone index for querying and storing vectors index_name = 'abstractive-question-answering' index = pc.Index(index_name) # Load the retriever model for sentence embeddings and the T5 model for text generation def load_models(): print("Loading models...") retriever = SentenceTransformer("flax-sentence-embeddings/all_datasets_v3_mpnet-base") tokenizer = T5Tokenizer.from_pretrained('t5-small') generator = T5ForConditionalGeneration.from_pretrained('t5-base').to(device) return retriever, generator, tokenizer print("Done loading models") retriever, generator, tokenizer = load_models() def process_query(query): print("Processing...") # Encode the query into a vector for semantic search using SentenceTransformer xq = retriever.encode([query]).tolist() # Query the Pinecone index for the most similar vector to the query xc = index.query(vector=xq, top_k=1, include_metadata=True) print("Pinecone response:", xc) # Concatenates the original question with the context extracted from the matched metadata if 'matches' in xc and isinstance(xc['matches'], list): context = [m['metadata']['Output'] for m in xc['matches']] context_str = " ".join(context) formatted_query = f"answer the question: {query} context: {context_str}" # If the context is longer than 5 lines, return the context extracted from Pinecone directly output_text = context_str if len(output_text.splitlines()) > 5: return output_text # If none, then it will return that it was not covered in the student manual if output_text.lower() == "none": return "The topic is not covered in the student manual." # Tokenizes the formatted query inputs = tokenizer.encode(formatted_query, return_tensors="pt", max_length=512, truncation=True).to(device) # Generates an answer using the t5 model ids = generator.generate(inputs, num_beams=2, min_length=10, max_length=60, repetition_penalty=1.2) # Decodes the answer to make it readable for the user answer = tokenizer.decode(ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) # If it has this words, it will just paste the output from the extracted meta-data output from pinecone nli_keywords = ['not_equivalent', 'not_entailment', 'entailment', 'neutral', 'not_enquiry'] if any(keyword in answer.lower() for keyword in nli_keywords): return context_str # returns the answer return answer