import gradio as gr def greet(name): return "Hello " + name + "!!" iface = gr.Interface(fn=greet, inputs="text", outputs="text") iface.launch() import fastbook from fastbook import * from fastai.vision.widgets import * import skimage from skimage import io as skio import numpy from PIL import Image, ImageEnhance def name_to_hrs (r): return float(round(float(os.path.basename(r)[0:-4].split("_")[1][1:])*(minutes/60)+5,2)) def validation_split (r): return os.path.basename(r)[0:-4].split("_")[3] == "R0003" or os.path.basename(r)[0:-4].split("_")[3] == "R0006" def get_label_filename(name): return path/'labels'/f'{name.stem}_annotationLabels.tif' zebrafish_age_predictor = load_learner(path/'FishAge.pkl') zebrafish_classifier = load_learner(path/'FishSegmentation.pkl')