Spaces:
Runtime error
Runtime error
Commit
·
91582e7
1
Parent(s):
fcd66fa
add main.py file
Browse files
main.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
from fastapi import FastAPI
|
4 |
+
from pydantic import BaseModel
|
5 |
+
import joblib
|
6 |
+
import pandas as pd
|
7 |
+
import numpy as np
|
8 |
+
from sklearn.preprocessing import StandardScaler
|
9 |
+
from sklearn.impute import SimpleImputer
|
10 |
+
from sklearn.compose import ColumnTransformer
|
11 |
+
from sklearn.pipeline import Pipeline
|
12 |
+
from sklearn.linear_model import LogisticRegression
|
13 |
+
|
14 |
+
app = FastAPI()
|
15 |
+
|
16 |
+
# Load the entire pipeline
|
17 |
+
# pipeline_filepath = "pipeline.joblib"
|
18 |
+
# pipeline = joblib.load(pipeline_filepath)
|
19 |
+
|
20 |
+
# import joblib
|
21 |
+
|
22 |
+
# Reload the model
|
23 |
+
pipeline_filepath = "pipeline.joblib"
|
24 |
+
pipeline = joblib.load(pipeline_filepath)
|
25 |
+
|
26 |
+
# Save the model again
|
27 |
+
joblib.dump(pipeline, pipeline_filepath)
|
28 |
+
|
29 |
+
|
30 |
+
class PatientData(BaseModel):
|
31 |
+
Plasma_glucose : float
|
32 |
+
Blood_Work_Result_1: float
|
33 |
+
Blood_Pressure : float
|
34 |
+
Blood_Work_Result_2 : float
|
35 |
+
Blood_Work_Result_3 : float
|
36 |
+
Body_mass_index : float
|
37 |
+
Blood_Work_Result_4: float
|
38 |
+
Age: float
|
39 |
+
Insurance: int
|
40 |
+
|
41 |
+
@app.get("/")
|
42 |
+
def read_root():
|
43 |
+
explanation = {
|
44 |
+
'message': "Welcome to the Sepsis Prediction App",
|
45 |
+
'description': "This API allows you to predict sepsis based on patient data.",
|
46 |
+
'usage': "Submit a POST request to /predict with patient data to make predictions.",
|
47 |
+
|
48 |
+
}
|
49 |
+
return explanation
|
50 |
+
|
51 |
+
# @app.post("/predict")
|
52 |
+
# def get_data_from_user(data: PatientData):
|
53 |
+
# user_input = data.dict()
|
54 |
+
|
55 |
+
# input_df = pd.DataFrame([user_input])
|
56 |
+
|
57 |
+
# Make predictions using the loaded pipeline
|
58 |
+
# prediction = pipeline.predict(input_df)
|
59 |
+
# probabilities = pipeline.predict_proba(input_df)
|
60 |
+
|
61 |
+
|
62 |
+
# probability_of_positive_class = probabilities[0][1]
|
63 |
+
|
64 |
+
# Calculate the prediction
|
65 |
+
# sepsis_status = "Positive" if prediction[0] == 1 else "Negative"
|
66 |
+
# sepsis_explanation = "A positive prediction suggests that the patient might be exhibiting sepsis symptoms and requires immediate medical attention." if prediction[0] == 1 else "A negative prediction suggests that the patient is not currently exhibiting sepsis symptoms."
|
67 |
+
|
68 |
+
# result = {
|
69 |
+
# 'predicted_sepsis': sepsis_status,
|
70 |
+
# 'probability': probability_of_positive_class,
|
71 |
+
# 'sepsis_explanation': sepsis_explanation
|
72 |
+
# }
|
73 |
+
# return result
|
74 |
+
|
75 |
+
import logging
|
76 |
+
|
77 |
+
# Configure logging
|
78 |
+
logging.basicConfig(level=logging.INFO) # Set the desired logging level
|
79 |
+
|
80 |
+
@app.post("/predict")
|
81 |
+
def get_data_from_user(data: PatientData):
|
82 |
+
try:
|
83 |
+
logging.info("Received data: %s", data.dict())
|
84 |
+
user_input = data.dict()
|
85 |
+
input_df = pd.DataFrame([user_input])
|
86 |
+
|
87 |
+
# Make predictions using the loaded pipeline
|
88 |
+
prediction = pipeline.predict(input_df)
|
89 |
+
probabilities = pipeline.predict_proba(input_df)
|
90 |
+
|
91 |
+
probability_of_positive_class = probabilities[0][1]
|
92 |
+
|
93 |
+
# Calculate the prediction
|
94 |
+
sepsis_status = "Positive" if prediction[0] == 1 else "Negative"
|
95 |
+
|
96 |
+
result = {
|
97 |
+
'predicted_sepsis': sepsis_status,
|
98 |
+
'probability': probability_of_positive_class,
|
99 |
+
}
|
100 |
+
return result
|
101 |
+
except Exception as e:
|
102 |
+
logging.error("Error: %s", e)
|
103 |
+
return {"error": "An error occurred during prediction."}
|