Persian_ASR / app.py
imansarraf's picture
Update app.py
ccb1371 verified
raw
history blame
1.65 kB
import gradio as gr
from sad_tf import *
from autosub import SpeechRecognizer
from autosub import GOOGLE_SPEECH_API_KEY
import soundfile as sf
seg = Segmenter(ffmpeg_path="ffmpeg",model_path="keras_speech_music_noise_cnn.hdf5" , device="cpu",vad_type="vad")
recognizer = SpeechRecognizer(language="fa", rate=16000,api_key=GOOGLE_SPEECH_API_KEY, proxies=None)
def process_segment(args):
segment, wav = args
start, stop = segment
# pp = converter((start, stop))
pp = pcm_to_flac(wav[int(start*16000) : int(stop*16000)])
tr_beamsearch_lm = recognizer(pp)
return start, stop, tr_beamsearch_lm
def pcm_to_flac(pcm_data, sample_rate=16000):
buffer = io.BytesIO()
sf.write(buffer, pcm_data, sample_rate, format='FLAC')
flac_data = buffer.getvalue()
return flac_data
def transcribe_audio(audio_file):
text=""
isig,wav = seg(audio_file)
isig = filter_output(isig , max_silence=0.5 ,ignore_small_speech_segments=0.1 , max_speech_len=15 ,split_speech_bigger_than=20)
isig = [(a,b) for x,a,b,_,_ in isig]
results=[]
for segment in tqdm(isig):
results.append (process_segment((segment, wav)))
for start, stop, tr_beamsearch_lm in results:
try:
text += ' ' + tr_beamsearch_lm + '\r\n'
except:
pass
return text
# Define the Gradio interface
interface = gr.Interface(
fn=transcribe_audio,
inputs=gr.Audio(type="filepath"), # Removed 'source="microphone"'
outputs="text",
title="Audio Transcription",
description="Upload an audio file or record audio to get the transcription."
)
# Launch the Gradio app
interface.launch()