Spaces:
Sleeping
Sleeping
import gradio as gr | |
from iman.sad_tfpy10 import * | |
from autosub import SpeechRecognizer | |
from autosub import GOOGLE_SPEECH_API_KEY | |
import soundfile as sf | |
import io | |
css = """ | |
textarea { direction: rtl; text-align: right; font-family: Calibri, sans-serif; font-size: 16px;} | |
""" | |
recognizer = SpeechRecognizer(language="fa", rate=16000,api_key=GOOGLE_SPEECH_API_KEY, proxies=None) | |
seg = Segmenter(ffmpeg_path="ffmpeg",model_path="keras_speech_music_noise_cnn.hdf5" , device="cpu",vad_type="vad") | |
def process_segment(args): | |
segment, wav = args | |
start, stop = segment | |
# pp = converter((start, stop)) | |
pp = pcm_to_flac(wav[int(start*16000) : int(stop*16000)]) | |
tr_beamsearch_lm = recognizer(pp) | |
return start, stop, tr_beamsearch_lm | |
def pcm_to_flac(pcm_data, sample_rate=16000): | |
buffer = io.BytesIO() | |
sf.write(buffer, pcm_data, sample_rate, format='FLAC') | |
flac_data = buffer.getvalue() | |
return flac_data | |
def transcribe_audio(audio_file): | |
text="" | |
isig,wav = seg(audio_file) | |
isig = filter_output(isig , max_silence=0.5 ,ignore_small_speech_segments=0.1 , max_speech_len=15 ,split_speech_bigger_than=20) | |
isig = [(a,b) for x,a,b,_,_ in isig] | |
print(isig) | |
results=[] | |
for segment in isig: | |
results.append (process_segment((segment, wav))) | |
for start, stop, tr_beamsearch_lm in results: | |
try: | |
text += ' ' + tr_beamsearch_lm + '\r\n' | |
print(start) | |
print(stop) | |
print(text) | |
except: | |
pass | |
return text | |
# Define the Gradio interface | |
interface = gr.Interface( | |
fn=transcribe_audio, | |
inputs=gr.Audio(type="filepath"), | |
outputs=gr.Textbox(label="Transcription", elem_id="output-text",interactive=True), | |
title="Persian Audio Transcription", | |
description="Upload an audio file or record audio to get the transcription.", | |
css=css | |
) | |
# Launch the Gradio app | |
interface.launch() | |