Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,23 +5,20 @@ from autosub import GOOGLE_SPEECH_API_KEY
|
|
5 |
import soundfile as sf
|
6 |
import io
|
7 |
|
8 |
-
|
9 |
textarea { direction: rtl; text-align: right; font-family: Calibri, sans-serif; font-size: 16px;}
|
10 |
"""
|
11 |
|
12 |
|
13 |
-
|
14 |
-
textarea { direction: ltr; text-align: left; font-family: Calibri, sans-serif; font-size: 16px;}
|
15 |
-
"""
|
16 |
|
17 |
-
css=""
|
18 |
|
19 |
seg = Segmenter(ffmpeg_path="ffmpeg",model_path="keras_speech_music_noise_cnn.hdf5" , device="cpu",vad_type="vad")
|
20 |
|
21 |
|
22 |
|
23 |
def process_segment(args):
|
24 |
-
segment, wav
|
25 |
start, stop = segment
|
26 |
# pp = converter((start, stop))
|
27 |
pp = pcm_to_flac(wav[int(start*16000) : int(stop*16000)])
|
@@ -35,12 +32,8 @@ def pcm_to_flac(pcm_data, sample_rate=16000):
|
|
35 |
return flac_data
|
36 |
|
37 |
|
38 |
-
def transcribe_audio(audio_file
|
39 |
-
|
40 |
-
css = cssen
|
41 |
-
else:
|
42 |
-
css = cssfa
|
43 |
-
recognizer = SpeechRecognizer(language=lan, rate=16000,api_key=GOOGLE_SPEECH_API_KEY, proxies=None)
|
44 |
text=""
|
45 |
isig,wav = seg(audio_file)
|
46 |
isig = filter_output(isig , max_silence=0.5 ,ignore_small_speech_segments=0.1 , max_speech_len=15 ,split_speech_bigger_than=20)
|
@@ -48,7 +41,7 @@ def transcribe_audio(audio_file,lan):
|
|
48 |
print(isig)
|
49 |
results=[]
|
50 |
for segment in isig:
|
51 |
-
results.append (process_segment((segment, wav
|
52 |
for start, stop, tr_beamsearch_lm in results:
|
53 |
|
54 |
try:
|
@@ -65,10 +58,8 @@ def transcribe_audio(audio_file,lan):
|
|
65 |
# Define the Gradio interface
|
66 |
interface = gr.Interface(
|
67 |
fn=transcribe_audio,
|
68 |
-
inputs=
|
69 |
-
|
70 |
-
gr.Radio(choices=["fa", "en", "ar"], label="Language")
|
71 |
-
],
|
72 |
outputs=gr.Textbox(label="Transcription", elem_id="output-text",interactive=True),
|
73 |
title="Persian Audio Transcription",
|
74 |
description="Upload an audio file or record audio to get the transcription.",
|
|
|
5 |
import soundfile as sf
|
6 |
import io
|
7 |
|
8 |
+
css = """
|
9 |
textarea { direction: rtl; text-align: right; font-family: Calibri, sans-serif; font-size: 16px;}
|
10 |
"""
|
11 |
|
12 |
|
13 |
+
recognizer = SpeechRecognizer(language="fa", rate=16000,api_key=GOOGLE_SPEECH_API_KEY, proxies=None)
|
|
|
|
|
14 |
|
|
|
15 |
|
16 |
seg = Segmenter(ffmpeg_path="ffmpeg",model_path="keras_speech_music_noise_cnn.hdf5" , device="cpu",vad_type="vad")
|
17 |
|
18 |
|
19 |
|
20 |
def process_segment(args):
|
21 |
+
segment, wav = args
|
22 |
start, stop = segment
|
23 |
# pp = converter((start, stop))
|
24 |
pp = pcm_to_flac(wav[int(start*16000) : int(stop*16000)])
|
|
|
32 |
return flac_data
|
33 |
|
34 |
|
35 |
+
def transcribe_audio(audio_file):
|
36 |
+
|
|
|
|
|
|
|
|
|
37 |
text=""
|
38 |
isig,wav = seg(audio_file)
|
39 |
isig = filter_output(isig , max_silence=0.5 ,ignore_small_speech_segments=0.1 , max_speech_len=15 ,split_speech_bigger_than=20)
|
|
|
41 |
print(isig)
|
42 |
results=[]
|
43 |
for segment in isig:
|
44 |
+
results.append (process_segment((segment, wav)))
|
45 |
for start, stop, tr_beamsearch_lm in results:
|
46 |
|
47 |
try:
|
|
|
58 |
# Define the Gradio interface
|
59 |
interface = gr.Interface(
|
60 |
fn=transcribe_audio,
|
61 |
+
inputs=gr.Audio(type="filepath"),
|
62 |
+
|
|
|
|
|
63 |
outputs=gr.Textbox(label="Transcription", elem_id="output-text",interactive=True),
|
64 |
title="Persian Audio Transcription",
|
65 |
description="Upload an audio file or record audio to get the transcription.",
|