Spaces:
Running
on
T4
Running
on
T4
import gradio as gr | |
import os | |
import torch | |
import numpy as np | |
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') | |
from transformers import AutoModelForImageClassification, BlipImageProcessor | |
from diffusers import DiffusionPipeline, AutoencoderKL | |
import torchvision.transforms as transforms | |
from huggingface_hub import hf_hub_download | |
from safetensors import safe_open | |
from copy import deepcopy | |
from collections import OrderedDict | |
import requests | |
import json | |
from PIL import Image, ImageEnhance | |
import base64 | |
import io | |
import random | |
import math | |
class BZHStableSignatureDemo(object): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16").to("cuda") | |
# disable invisible-watermark | |
self.pipe.watermark = None | |
# save the original VAE | |
decoders = OrderedDict([("no watermark", self.pipe.vae)]) | |
# load the patched VAEs | |
for name in ("weak", "medium", "strong", "extreme"): | |
vae = AutoencoderKL.from_pretrained(f"imatag/stable-signature-bzh-sdxl-vae-{name}", torch_dtype=torch.float16).to("cuda") | |
decoders[name] = vae | |
self.decoders = decoders | |
# load the proxy detector | |
self.detector_image_processor = BlipImageProcessor.from_pretrained("imatag/stable-signature-bzh-detector-resnet18") | |
self.detector_model = AutoModelForImageClassification.from_pretrained("imatag/stable-signature-bzh-detector-resnet18") | |
calibration = hf_hub_download("imatag/stable-signature-bzh-detector-resnet18", filename="calibration.safetensors") | |
with safe_open(calibration, framework="pt") as f: | |
self.calibration_logits = f.get_tensor("logits") | |
def generate(self, mode, seed, prompt): | |
generator = torch.Generator(device=device) | |
torch.manual_seed(seed) | |
# load the patched VAE | |
vae = self.decoders[mode] | |
self.pipe.vae = vae | |
output = self.pipe(prompt, num_inference_steps=4, guidance_scale=0.0, output_type="pil") | |
return output.images[0] | |
def attack(self, img, jpeg_compression, downscale, crop, saturation, brightness, contrast): | |
img = img.convert("RGB") | |
# attack | |
if downscale != 1: | |
size = img.size | |
size = (int(size[0] / downscale), int(size[1] / downscale)) | |
img = img.resize(size, Image.Resampling.LANCZOS) | |
if crop != 0: | |
width, height = img.size | |
area = width * height | |
log_rmin = math.log(0.5) | |
log_rmax = math.log(2.0) | |
for _ in range(10): | |
target_area = area * (1 - crop) | |
aspect_ratio = math.exp(random.random() * (log_rmax - log_rmin) + log_rmin) | |
w = int(round(math.sqrt(target_area * aspect_ratio))) | |
h = int(round(math.sqrt(target_area / aspect_ratio))) | |
if 0 < w <= width and 0 < h <= height: | |
top = random.randint(0, height - h + 1) | |
left = random.randint(0, width - w + 1) | |
img = img.crop((left, top, left+w, top+h)) | |
break | |
converter = ImageEnhance.Color(img) | |
img = converter.enhance(saturation) | |
converter = ImageEnhance.Brightness(img) | |
img = converter.enhance(brightness) | |
converter = ImageEnhance.Contrast(img) | |
img = converter.enhance(contrast) | |
# JPEG attack | |
mf = io.BytesIO() | |
img.save(mf, format='JPEG', quality=jpeg_compression) | |
filesize = mf.tell() | |
mf.seek(0) | |
img = Image.open(mf) | |
image_info = "resolution: %dx%d" % img.size | |
image_info += " JPEG file size: %d" % filesize | |
return img, image_info | |
def detect_api(self, img): | |
# send to detection API and apply JPEG compression attack | |
mf = io.BytesIO() | |
img.save(mf, format='PNG') | |
b64 = base64.b64encode(mf.getvalue()) | |
data = { | |
'image': b64.decode('utf8') | |
} | |
headers = {} | |
api_key = os.getenv('BZH_API_KEY') | |
if api_key: | |
headers['x-api-key'] = api_key | |
response = requests.post('https://bzh.imatag.com/bzh/api/v1.0/detect', | |
json=data, headers=headers) | |
response.raise_for_status() | |
data = response.json() | |
pvalue = data['p-value'] | |
return pvalue | |
def detect_proxy(self, img): | |
img = img.convert("RGB") | |
inputs = self.detector_image_processor(img, return_tensors="pt") | |
with torch.no_grad(): | |
logit = self.detector_model(**inputs).logits[...,0] | |
pvalue = (1 + torch.searchsorted(self.calibration_logits, logit)) / self.calibration_logits.shape[0] | |
pvalue = pvalue.item() | |
return pvalue | |
def detect(self, img, detection_method): | |
if detection_method == "API": | |
pvalue = self.detect_api(img) | |
else: | |
pvalue = self.detect_proxy(img) | |
result = "No watermark detected." | |
rpv = 10**int(math.log10(pvalue)) | |
if pvalue < 1e-3: | |
result = "Watermark detected with low confidence" # (p-value<%.0e)" % rpv | |
if pvalue < 1e-6: | |
result = "Watermark detected with high confidence" # (p-value<%.0e)" % rpv | |
score = min(int(-math.log10(pvalue)), 10) | |
#print("score = ", score) | |
return { result: score/10 } | |
def interface(): | |
prompt = "sailing ship in storm by Rembrandt" | |
backend = BZHStableSignatureDemo() | |
decoders = list(backend.decoders.keys()) | |
with gr.Blocks() as demo: | |
gr.Markdown("""# Watermarked SDXL-Turbo demo | |
This demo brought to you by [IMATAG](https://www.imatag.com/) presents watermarking of images generated via [StableDiffusion XL Turbo](https://huggingface.co/stabilityai/sdxl-turbo). | |
Using the method presented in [StableSignature](https://ai.meta.com/blog/stable-signature-watermarking-generative-ai/), | |
the VAE decoder of StableDiffusion is fine-tuned to produce images including a specific invisible watermark. We combined | |
this method with a demo version of [IMATAG](https://www.imatag.com/)'s in-house decoder. The watermarking system operates in zero-bit mode for improved robustness.""") | |
gr.Markdown("""## 1. Generate | |
Select a watermarking strength and generate images with StableDiffusion-XL Turbo from prompt and seed as usual.""") | |
with gr.Row(): | |
inp = gr.Textbox(label="Prompt", value=prompt) | |
seed = gr.Number(label="Seed", precision=0) | |
mode = gr.Dropdown(choices=decoders, label="Watermark strength", value="medium") | |
with gr.Row(): | |
btn1 = gr.Button("Generate") | |
with gr.Row(): | |
watermarked_image = gr.Image(type="pil", width=512, height=512, sources=[], interactive=False) | |
gr.Markdown("""## 2. Edit | |
With these controls you may alter the generated image before detection. You may also upload your own edited image instead.""") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
downscale = gr.Slider(1, 3, value=1, step=0.1, label="Downscale ratio") | |
crop = gr.Slider(0, 0.9, value=0, step=0.01, label="Random crop ratio") | |
with gr.Row(): | |
brightness = gr.Slider(0, 2, value=1, step=0.1, label="Brightness") | |
contrast = gr.Slider(0, 2, value=1, step=0.1, label="Contrast") | |
with gr.Row(): | |
saturation = gr.Slider(0, 2, value=1, step=0.1, label="Color saturation") | |
jpeg_compression = gr.Slider(value=100, step=5, label="JPEG quality") | |
btn2 = gr.Button("Edit") | |
with gr.Row(): | |
attacked_image = gr.Image(type="pil", width=512, sources=['upload', 'clipboard']) | |
with gr.Row(): | |
image_info_label = gr.Label(label="Image info") | |
gr.Markdown("""## 3. Detect | |
Detect the watermark on the altered image. Watermark may not be detected if the image is altered too strongly. | |
You may choose to detect with our fast [proxy model](https://huggingface.co/imatag/stable-signature-bzh-detector-resnet18), or via API for improved robustness. | |
""") | |
with gr.Row(): | |
detection_method = gr.Dropdown(choices=["proxy model", "API"], label="Detection method", value="proxy model") | |
btn3 = gr.Button("Detect") | |
with gr.Row(): | |
detection_label = gr.Label(label="Detection info") | |
btn1.click(fn=backend.generate, inputs=[mode, seed, inp], outputs=[watermarked_image], api_name="generate") | |
btn2.click(fn=backend.attack, inputs=[watermarked_image, jpeg_compression, downscale, crop, saturation, brightness, contrast], outputs=[attacked_image, image_info_label], api_name="attack") | |
btn3.click(fn=backend.detect, inputs=[attacked_image, detection_method], outputs=[detection_label], api_name="detect") | |
return demo | |
if __name__ == '__main__': | |
demo = interface() | |
demo.launch() | |