raheemuddin commited on
Commit
0411334
·
verified ·
1 Parent(s): 8fefe8c

S3 upload output

Browse files
Files changed (1) hide show
  1. app.py +21 -4
app.py CHANGED
@@ -1,9 +1,13 @@
 
1
  import gradio as gr
2
  import boto3
3
  import os
 
4
 
5
  hf_token = os.environ.get("HF_TOKEN")
6
  tasomi_model = os.environ.get("TASOMI_MODEL")
 
 
7
  m=gr.load(tasomi_model, src="models",hf_token=hf_token)
8
 
9
  def detect_language(text):
@@ -15,6 +19,15 @@ def detect_language(text):
15
  detected_language = response['Languages'][0]['LanguageCode']
16
  return detected_language
17
 
 
 
 
 
 
 
 
 
 
18
  def translate_and_predict(text):
19
  """Translates text and generates an image using Stable Diffusion."""
20
  source_language_code=detect_language(text)
@@ -25,15 +38,19 @@ def translate_and_predict(text):
25
  translation_result = translate.translate_text(Text=text, SourceLanguageCode=source_language_code, TargetLanguageCode=target_language_code)
26
  translated_text = translation_result.get('TranslatedText')
27
  print("translated_text:" , translated_text)
28
- image_path=m(translated_text)
29
- return image_path
 
 
 
 
30
 
31
  # Define the Gradio interface
32
  iface = gr.Interface(
33
  fn=translate_and_predict, # Since we're only displaying an image, there's no function to call
34
  inputs=["text"], # Input: text, source language, target language
35
- outputs="image", # Output: generated image
36
- title="Image Viewer",
37
  )
38
 
39
  # Launch the interface
 
1
+ import uuid
2
  import gradio as gr
3
  import boto3
4
  import os
5
+ from PIL import Image
6
 
7
  hf_token = os.environ.get("HF_TOKEN")
8
  tasomi_model = os.environ.get("TASOMI_MODEL")
9
+ s3_bucket = os.environ.get("IMCAPSULE_EXTERNAL_BUCKET")
10
+
11
  m=gr.load(tasomi_model, src="models",hf_token=hf_token)
12
 
13
  def detect_language(text):
 
19
  detected_language = response['Languages'][0]['LanguageCode']
20
  return detected_language
21
 
22
+ def upload_file(file_path):
23
+ s3 = boto3.client('s3')
24
+ key='public/' + os.path.basename(file_path)
25
+ # Upload the file
26
+ s3.upload_file(file_path, s3_bucket, key)
27
+ s3_path = f"{s3.meta.endpoint_url}/{s3_bucket}/{key}"
28
+ print(f'File uploaded successfully. s3_path= {s3_path} ')
29
+ return s3_path
30
+
31
  def translate_and_predict(text):
32
  """Translates text and generates an image using Stable Diffusion."""
33
  source_language_code=detect_language(text)
 
38
  translation_result = translate.translate_text(Text=text, SourceLanguageCode=source_language_code, TargetLanguageCode=target_language_code)
39
  translated_text = translation_result.get('TranslatedText')
40
  print("translated_text:" , translated_text)
41
+ gen_image=m(translated_text)
42
+ webp_image = Image.open(gen_image)
43
+ converted_image_path = f"./tasomi-{uuid.uuid4().hex}.jpg"
44
+ webp_image.save(converted_image_path, "JPEG")
45
+ s3_path = upload_file(converted_image_path)
46
+ return s3_path,s3_path
47
 
48
  # Define the Gradio interface
49
  iface = gr.Interface(
50
  fn=translate_and_predict, # Since we're only displaying an image, there's no function to call
51
  inputs=["text"], # Input: text, source language, target language
52
+ outputs=["image","text"], # Output: generated image
53
+ title="Tasomi Images",
54
  )
55
 
56
  # Launch the interface