GoogleNet / app.py
imkaushalpatel's picture
Update app.py
c6a1fe2
raw
history blame
2.44 kB
import os
import torch
from PIL import Image
from torchvision import transforms
import gradio as gr
model = torch.hub.load('pytorch/vision:v0.9.0', 'googlenet', pretrained=True)
model.eval()
torch.hub.download_url_to_file("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
# sample execution (requires torchvision)
def inference(input_image):
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
# move the input and model to GPU for speed if available
if torch.cuda.is_available():
input_batch = input_batch.to('cuda')
model.to('cuda')
with torch.no_grad():
output = model(input_batch)
# The output has unnormalized scores. To get probabilities, you can run a softmax on it.
probabilities = torch.nn.functional.softmax(output[0], dim=0)
# Download ImageNet labels
os.system("wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt")
# Read the categories
with open("imagenet_classes.txt", "r") as f:
categories = [s.strip() for s in f.readlines()]
# Show top categories per image
top5_prob, top5_catid = torch.topk(probabilities, 5)
result = {}
for i in range(top5_prob.size(0)):
result[categories[top5_catid[i]]] = top5_prob[i].item()
return result
inputs = gr.inputs.Image(type='pil', label="Original Image")
outputs = gr.outputs.Image(type="pil", label="Output Image")
title = "GOOGLENET"
description = "Gradio demo for GOOGLENET, GoogLeNet was based on a deep convolutional neural network architecture codenamed Inception which won ImageNet 2014. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1409.4842'>Going Deeper with Convolutions</a> | <a href='https://github.com/pytorch/vision/blob/master/torchvision/models/googlenet.py'>Github Repo</a></p>"
examples = [
['dog.jpg']
]
gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=examples, analytics_enabled=False).launch()