Spaces:
Runtime error
Runtime error
imkaushalpatel
commited on
Commit
·
b01f4ea
1
Parent(s):
bbb1406
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
from onnx import numpy_helper
|
4 |
+
import onnx
|
5 |
+
import os
|
6 |
+
from PIL import Image
|
7 |
+
from matplotlib.pyplot import imshow
|
8 |
+
import onnxruntime as rt
|
9 |
+
from scipy import special
|
10 |
+
import colorsys
|
11 |
+
import random
|
12 |
+
import gradio as gr
|
13 |
+
|
14 |
+
def image_preprocess(image, target_size, gt_boxes=None):
|
15 |
+
|
16 |
+
ih, iw = target_size
|
17 |
+
h, w, _ = image.shape
|
18 |
+
|
19 |
+
scale = min(iw/w, ih/h)
|
20 |
+
nw, nh = int(scale * w), int(scale * h)
|
21 |
+
image_resized = cv2.resize(image, (nw, nh))
|
22 |
+
|
23 |
+
image_padded = np.full(shape=[ih, iw, 3], fill_value=128.0)
|
24 |
+
dw, dh = (iw - nw) // 2, (ih-nh) // 2
|
25 |
+
image_padded[dh:nh+dh, dw:nw+dw, :] = image_resized
|
26 |
+
image_padded = image_padded / 255.
|
27 |
+
|
28 |
+
if gt_boxes is None:
|
29 |
+
return image_padded
|
30 |
+
|
31 |
+
else:
|
32 |
+
gt_boxes[:, [0, 2]] = gt_boxes[:, [0, 2]] * scale + dw
|
33 |
+
gt_boxes[:, [1, 3]] = gt_boxes[:, [1, 3]] * scale + dh
|
34 |
+
return image_padded, gt_boxes
|
35 |
+
|
36 |
+
input_size = 416
|
37 |
+
|
38 |
+
os.system("wget https://github.com/AK391/models/raw/main/vision/object_detection_segmentation/yolov4/model/yolov4.onnx")
|
39 |
+
|
40 |
+
# Start from ORT 1.10, ORT requires explicitly setting the providers parameter if you want to use execution providers
|
41 |
+
# other than the default CPU provider (as opposed to the previous behavior of providers getting set/registered by default
|
42 |
+
# based on the build flags) when instantiating InferenceSession.
|
43 |
+
# For example, if NVIDIA GPU is available and ORT Python package is built with CUDA, then call API as following:
|
44 |
+
# rt.InferenceSession(path/to/model, providers=['CUDAExecutionProvider'])
|
45 |
+
sess = rt.InferenceSession("yolov4.onnx")
|
46 |
+
|
47 |
+
outputs = sess.get_outputs()
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
def get_anchors(anchors_path, tiny=False):
|
52 |
+
'''loads the anchors from a file'''
|
53 |
+
with open(anchors_path) as f:
|
54 |
+
anchors = f.readline()
|
55 |
+
anchors = np.array(anchors.split(','), dtype=np.float32)
|
56 |
+
return anchors.reshape(3, 3, 2)
|
57 |
+
|
58 |
+
def postprocess_bbbox(pred_bbox, ANCHORS, STRIDES, XYSCALE=[1,1,1]):
|
59 |
+
'''define anchor boxes'''
|
60 |
+
for i, pred in enumerate(pred_bbox):
|
61 |
+
conv_shape = pred.shape
|
62 |
+
output_size = conv_shape[1]
|
63 |
+
conv_raw_dxdy = pred[:, :, :, :, 0:2]
|
64 |
+
conv_raw_dwdh = pred[:, :, :, :, 2:4]
|
65 |
+
xy_grid = np.meshgrid(np.arange(output_size), np.arange(output_size))
|
66 |
+
xy_grid = np.expand_dims(np.stack(xy_grid, axis=-1), axis=2)
|
67 |
+
|
68 |
+
xy_grid = np.tile(np.expand_dims(xy_grid, axis=0), [1, 1, 1, 3, 1])
|
69 |
+
xy_grid = xy_grid.astype(np.float)
|
70 |
+
|
71 |
+
pred_xy = ((special.expit(conv_raw_dxdy) * XYSCALE[i]) - 0.5 * (XYSCALE[i] - 1) + xy_grid) * STRIDES[i]
|
72 |
+
pred_wh = (np.exp(conv_raw_dwdh) * ANCHORS[i])
|
73 |
+
pred[:, :, :, :, 0:4] = np.concatenate([pred_xy, pred_wh], axis=-1)
|
74 |
+
|
75 |
+
pred_bbox = [np.reshape(x, (-1, np.shape(x)[-1])) for x in pred_bbox]
|
76 |
+
pred_bbox = np.concatenate(pred_bbox, axis=0)
|
77 |
+
return pred_bbox
|
78 |
+
|
79 |
+
|
80 |
+
def postprocess_boxes(pred_bbox, org_img_shape, input_size, score_threshold):
|
81 |
+
'''remove boundary boxs with a low detection probability'''
|
82 |
+
valid_scale=[0, np.inf]
|
83 |
+
pred_bbox = np.array(pred_bbox)
|
84 |
+
|
85 |
+
pred_xywh = pred_bbox[:, 0:4]
|
86 |
+
pred_conf = pred_bbox[:, 4]
|
87 |
+
pred_prob = pred_bbox[:, 5:]
|
88 |
+
|
89 |
+
# # (1) (x, y, w, h) --> (xmin, ymin, xmax, ymax)
|
90 |
+
pred_coor = np.concatenate([pred_xywh[:, :2] - pred_xywh[:, 2:] * 0.5,
|
91 |
+
pred_xywh[:, :2] + pred_xywh[:, 2:] * 0.5], axis=-1)
|
92 |
+
# # (2) (xmin, ymin, xmax, ymax) -> (xmin_org, ymin_org, xmax_org, ymax_org)
|
93 |
+
org_h, org_w = org_img_shape
|
94 |
+
resize_ratio = min(input_size / org_w, input_size / org_h)
|
95 |
+
|
96 |
+
dw = (input_size - resize_ratio * org_w) / 2
|
97 |
+
dh = (input_size - resize_ratio * org_h) / 2
|
98 |
+
|
99 |
+
pred_coor[:, 0::2] = 1.0 * (pred_coor[:, 0::2] - dw) / resize_ratio
|
100 |
+
pred_coor[:, 1::2] = 1.0 * (pred_coor[:, 1::2] - dh) / resize_ratio
|
101 |
+
|
102 |
+
# # (3) clip some boxes that are out of range
|
103 |
+
pred_coor = np.concatenate([np.maximum(pred_coor[:, :2], [0, 0]),
|
104 |
+
np.minimum(pred_coor[:, 2:], [org_w - 1, org_h - 1])], axis=-1)
|
105 |
+
invalid_mask = np.logical_or((pred_coor[:, 0] > pred_coor[:, 2]), (pred_coor[:, 1] > pred_coor[:, 3]))
|
106 |
+
pred_coor[invalid_mask] = 0
|
107 |
+
|
108 |
+
# # (4) discard some invalid boxes
|
109 |
+
bboxes_scale = np.sqrt(np.multiply.reduce(pred_coor[:, 2:4] - pred_coor[:, 0:2], axis=-1))
|
110 |
+
scale_mask = np.logical_and((valid_scale[0] < bboxes_scale), (bboxes_scale < valid_scale[1]))
|
111 |
+
|
112 |
+
# # (5) discard some boxes with low scores
|
113 |
+
classes = np.argmax(pred_prob, axis=-1)
|
114 |
+
scores = pred_conf * pred_prob[np.arange(len(pred_coor)), classes]
|
115 |
+
score_mask = scores > score_threshold
|
116 |
+
mask = np.logical_and(scale_mask, score_mask)
|
117 |
+
coors, scores, classes = pred_coor[mask], scores[mask], classes[mask]
|
118 |
+
|
119 |
+
return np.concatenate([coors, scores[:, np.newaxis], classes[:, np.newaxis]], axis=-1)
|
120 |
+
|
121 |
+
def bboxes_iou(boxes1, boxes2):
|
122 |
+
'''calculate the Intersection Over Union value'''
|
123 |
+
boxes1 = np.array(boxes1)
|
124 |
+
boxes2 = np.array(boxes2)
|
125 |
+
|
126 |
+
boxes1_area = (boxes1[..., 2] - boxes1[..., 0]) * (boxes1[..., 3] - boxes1[..., 1])
|
127 |
+
boxes2_area = (boxes2[..., 2] - boxes2[..., 0]) * (boxes2[..., 3] - boxes2[..., 1])
|
128 |
+
|
129 |
+
left_up = np.maximum(boxes1[..., :2], boxes2[..., :2])
|
130 |
+
right_down = np.minimum(boxes1[..., 2:], boxes2[..., 2:])
|
131 |
+
|
132 |
+
inter_section = np.maximum(right_down - left_up, 0.0)
|
133 |
+
inter_area = inter_section[..., 0] * inter_section[..., 1]
|
134 |
+
union_area = boxes1_area + boxes2_area - inter_area
|
135 |
+
ious = np.maximum(1.0 * inter_area / union_area, np.finfo(np.float32).eps)
|
136 |
+
|
137 |
+
return ious
|
138 |
+
|
139 |
+
def nms(bboxes, iou_threshold, sigma=0.3, method='nms'):
|
140 |
+
"""
|
141 |
+
:param bboxes: (xmin, ymin, xmax, ymax, score, class)
|
142 |
+
Note: soft-nms, https://arxiv.org/pdf/1704.04503.pdf
|
143 |
+
https://github.com/bharatsingh430/soft-nms
|
144 |
+
"""
|
145 |
+
classes_in_img = list(set(bboxes[:, 5]))
|
146 |
+
best_bboxes = []
|
147 |
+
|
148 |
+
for cls in classes_in_img:
|
149 |
+
cls_mask = (bboxes[:, 5] == cls)
|
150 |
+
cls_bboxes = bboxes[cls_mask]
|
151 |
+
|
152 |
+
while len(cls_bboxes) > 0:
|
153 |
+
max_ind = np.argmax(cls_bboxes[:, 4])
|
154 |
+
best_bbox = cls_bboxes[max_ind]
|
155 |
+
best_bboxes.append(best_bbox)
|
156 |
+
cls_bboxes = np.concatenate([cls_bboxes[: max_ind], cls_bboxes[max_ind + 1:]])
|
157 |
+
iou = bboxes_iou(best_bbox[np.newaxis, :4], cls_bboxes[:, :4])
|
158 |
+
weight = np.ones((len(iou),), dtype=np.float32)
|
159 |
+
|
160 |
+
assert method in ['nms', 'soft-nms']
|
161 |
+
|
162 |
+
if method == 'nms':
|
163 |
+
iou_mask = iou > iou_threshold
|
164 |
+
weight[iou_mask] = 0.0
|
165 |
+
|
166 |
+
if method == 'soft-nms':
|
167 |
+
weight = np.exp(-(1.0 * iou ** 2 / sigma))
|
168 |
+
|
169 |
+
cls_bboxes[:, 4] = cls_bboxes[:, 4] * weight
|
170 |
+
score_mask = cls_bboxes[:, 4] > 0.
|
171 |
+
cls_bboxes = cls_bboxes[score_mask]
|
172 |
+
|
173 |
+
return best_bboxes
|
174 |
+
|
175 |
+
def read_class_names(class_file_name):
|
176 |
+
'''loads class name from a file'''
|
177 |
+
names = {}
|
178 |
+
with open(class_file_name, 'r') as data:
|
179 |
+
for ID, name in enumerate(data):
|
180 |
+
names[ID] = name.strip('\n')
|
181 |
+
return names
|
182 |
+
|
183 |
+
def draw_bbox(image, bboxes, classes=read_class_names("coco.names"), show_label=True):
|
184 |
+
"""
|
185 |
+
bboxes: [x_min, y_min, x_max, y_max, probability, cls_id] format coordinates.
|
186 |
+
"""
|
187 |
+
|
188 |
+
num_classes = len(classes)
|
189 |
+
image_h, image_w, _ = image.shape
|
190 |
+
hsv_tuples = [(1.0 * x / num_classes, 1., 1.) for x in range(num_classes)]
|
191 |
+
colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
|
192 |
+
colors = list(map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), colors))
|
193 |
+
|
194 |
+
random.seed(0)
|
195 |
+
random.shuffle(colors)
|
196 |
+
random.seed(None)
|
197 |
+
|
198 |
+
for i, bbox in enumerate(bboxes):
|
199 |
+
coor = np.array(bbox[:4], dtype=np.int32)
|
200 |
+
fontScale = 0.5
|
201 |
+
score = bbox[4]
|
202 |
+
class_ind = int(bbox[5])
|
203 |
+
bbox_color = colors[class_ind]
|
204 |
+
bbox_thick = int(0.6 * (image_h + image_w) / 600)
|
205 |
+
c1, c2 = (coor[0], coor[1]), (coor[2], coor[3])
|
206 |
+
cv2.rectangle(image, c1, c2, bbox_color, bbox_thick)
|
207 |
+
|
208 |
+
if show_label:
|
209 |
+
bbox_mess = '%s: %.2f' % (classes[class_ind], score)
|
210 |
+
t_size = cv2.getTextSize(bbox_mess, 0, fontScale, thickness=bbox_thick//2)[0]
|
211 |
+
cv2.rectangle(image, c1, (c1[0] + t_size[0], c1[1] - t_size[1] - 3), bbox_color, -1)
|
212 |
+
cv2.putText(image, bbox_mess, (c1[0], c1[1]-2), cv2.FONT_HERSHEY_SIMPLEX,
|
213 |
+
fontScale, (0, 0, 0), bbox_thick//2, lineType=cv2.LINE_AA)
|
214 |
+
|
215 |
+
return image
|
216 |
+
|
217 |
+
def inference(img):
|
218 |
+
original_image = cv2.imread(img)
|
219 |
+
original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)
|
220 |
+
original_image_size = original_image.shape[:2]
|
221 |
+
|
222 |
+
image_data = image_preprocess(np.copy(original_image), [input_size, input_size])
|
223 |
+
image_data = image_data[np.newaxis, ...].astype(np.float32)
|
224 |
+
|
225 |
+
print("Preprocessed image shape:",image_data.shape) # shape of the preprocessed input
|
226 |
+
|
227 |
+
output_names = list(map(lambda output: output.name, outputs))
|
228 |
+
input_name = sess.get_inputs()[0].name
|
229 |
+
|
230 |
+
detections = sess.run(output_names, {input_name: image_data})
|
231 |
+
print("Output shape:", list(map(lambda detection: detection.shape, detections)))
|
232 |
+
|
233 |
+
ANCHORS = "./yolov4_anchors.txt"
|
234 |
+
STRIDES = [8, 16, 32]
|
235 |
+
XYSCALE = [1.2, 1.1, 1.05]
|
236 |
+
|
237 |
+
ANCHORS = get_anchors(ANCHORS)
|
238 |
+
STRIDES = np.array(STRIDES)
|
239 |
+
|
240 |
+
|
241 |
+
|
242 |
+
pred_bbox = postprocess_bbbox(detections, ANCHORS, STRIDES, XYSCALE)
|
243 |
+
bboxes = postprocess_boxes(pred_bbox, original_image_size, input_size, 0.25)
|
244 |
+
bboxes = nms(bboxes, 0.213, method='nms')
|
245 |
+
image = draw_bbox(original_image, bboxes)
|
246 |
+
|
247 |
+
image = Image.fromarray(image)
|
248 |
+
return image
|
249 |
+
|
250 |
+
title="YOLOv4"
|
251 |
+
description="YOLOv4 optimizes the speed and accuracy of object detection. It is two times faster than EfficientDet. It improves YOLOv3's AP and FPS by 10% and 12%, respectively, with mAP50 of 52.32 on the COCO 2017 dataset and FPS of 41.7 on Tesla 100."
|
252 |
+
examples=[["example.png"]]
|
253 |
+
gr.Interface(inference,gr.inputs.Image(type="filepath"),gr.outputs.Image(type="pil"),title=title,description=description,examples=examples).launch()
|
254 |
+
|