File size: 15,909 Bytes
ad7bc89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d3da67
ad7bc89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a24f25c
ad7bc89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d3da67
ad7bc89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d3da67
ad7bc89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
import sys
import copy
from typing import List

import numpy as np
import torch
from einops import rearrange
from omegaconf import OmegaConf
from PIL import Image
from pytorch_lightning import seed_everything
from pytorch3d.renderer.cameras import PerspectiveCameras
from pytorch3d.renderer import look_at_view_transform
from pytorch3d.renderer.camera_utils import join_cameras_as_batch

import json

sys.path.append('./custom-diffusion360/')
from sgm.util import instantiate_from_config, load_safetensors

choices = []


def load_base_model(config, ckpt=None, verbose=True):
    config = OmegaConf.load(config)
    # load model
    config.model.params.network_config.params.far = 3
    config.model.params.first_stage_config.params.ckpt_path = "pretrained-models/sdxl_vae.safetensors"
    guider_config = {'target': 'sgm.modules.diffusionmodules.guiders.ScheduledCFGImgTextRef',
                        'params': {'scale': 7.5, 'scale_im': 3.5}
                        }
    config.model.params.sampler_config.params.guider_config = guider_config

    model = instantiate_from_config(config.model)

    if ckpt is not None:
        print(f"Loading model from {ckpt}")
        if ckpt.endswith("ckpt"):
            pl_sd = torch.load(ckpt, map_location="cpu")
            if "global_step" in pl_sd:
                print(f"Global Step: {pl_sd['global_step']}")
            sd = pl_sd["state_dict"]
        elif ckpt.endswith("safetensors"):
            sd = load_safetensors(ckpt)
            if 'modifier_token' in config.data.params:
                del sd['conditioner.embedders.0.transformer.text_model.embeddings.token_embedding.weight']
                del sd['conditioner.embedders.1.model.token_embedding.weight']
        else:
            raise NotImplementedError
        
    m, u = model.load_state_dict(sd, strict=False)

    model.eval()
    return model


def load_delta_model(model, delta_ckpt=None, verbose=True, freeze=True):
    """
    model is preloaded base stable diffusion model
    """

    msg = None
    if delta_ckpt is not None:
        pl_sd_delta = torch.load(delta_ckpt, map_location="cpu")
        sd_delta = pl_sd_delta["delta_state_dict"]

        # TODO: add new delta loading embedding stuff?

        for name, module in model.model.diffusion_model.named_modules():
            if len(name.split('.')) > 1 and name.split('.')[-2] == 'transformer_blocks':
                if hasattr(module, 'pose_emb_layers'):
                    module.register_buffer('references', sd_delta[f'model.diffusion_model.{name}.references'])
                    del sd_delta[f'model.diffusion_model.{name}.references']

        m, u = model.load_state_dict(sd_delta, strict=False)
    

    if len(m) > 0 and verbose:
        print("missing keys:")
    if len(u) > 0 and verbose:
        print("unexpected keys:")

    if freeze:
        for param in model.parameters():
            param.requires_grad = False

    model.eval()
    return model, msg


def get_unique_embedder_keys_from_conditioner(conditioner):
    p = [x.input_keys for x in conditioner.embedders]
    return list(set([item for sublist in p for item in sublist])) + ['jpg_ref']


def customforward(self, x, xr, context=None, contextr=None, pose=None, mask_ref=None, prev_weights=None, timesteps=None, drop_im=None):
    # note: if no context is given, cross-attention defaults to self-attention
    if not isinstance(context, list):
        context = [context]
    b, c, h, w = x.shape
    x_in = x
    fg_masks = []
    alphas = []
    rgbs = []

    x = self.norm(x)

    if not self.use_linear:
        x = self.proj_in(x)

    x = rearrange(x, "b c h w -> b (h w) c").contiguous()
    if self.use_linear:
        x = self.proj_in(x)

    prev_weights = None
    counter = 0
    for i, block in enumerate(self.transformer_blocks):
        if i > 0 and len(context) == 1:
            i = 0  # use same context for each block
        if self.image_cross and (counter % self.poscontrol_interval == 0):
            x, fg_mask, weights, alpha, rgb = block(x, context=context[i], context_ref=x, pose=pose, mask_ref=mask_ref, prev_weights=prev_weights, drop_im=drop_im)
            prev_weights = weights
            fg_masks.append(fg_mask)
            if alpha is not None:
                alphas.append(alpha)
            if rgb is not None:
                rgbs.append(rgb)
        else:
            x, _, _, _, _ = block(x, context=context[i], drop_im=drop_im)
        counter += 1
    if self.use_linear:
        x = self.proj_out(x)
    x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
    if not self.use_linear:
        x = self.proj_out(x)
    if len(fg_masks) > 0:
        if len(rgbs) <= 0:
            rgbs = None
        if len(alphas) <= 0:
            alphas = None
        return x + x_in, None, fg_masks, prev_weights, alphas, rgbs
    else:
        return x + x_in, None, None, prev_weights, None, None


def _customforward(
        self, x, context=None, context_ref=None, pose=None, mask_ref=None, prev_weights=None, drop_im=None, additional_tokens=None, n_times_crossframe_attn_in_self=0
    ):
    if context_ref is not None:
        global choices
        batch_size = x.size(0)
        # IP2P like sampling or default sampling
        if batch_size % 3 == 0:
            batch_size = batch_size // 3
            context_ref = torch.stack([self.references[:-1][y] for y in choices]).unsqueeze(0).expand(batch_size, -1, -1, -1)
            context_ref = torch.cat([self.references[-1:].unsqueeze(0).expand(batch_size, context_ref.size(1), -1, -1), context_ref, context_ref], dim=0)
        else:
            batch_size = batch_size // 2
            context_ref = torch.stack([self.references[:-1][y] for y in choices]).unsqueeze(0).expand(batch_size, -1, -1, -1)
            context_ref = torch.cat([self.references[-1:].unsqueeze(0).expand(batch_size, context_ref.size(1), -1, -1), context_ref], dim=0)

    fg_mask = None
    weights = None
    alphas = None
    predicted_rgb = None

    x = (
        self.attn1(
            self.norm1(x),
            context=context if self.disable_self_attn else None,
            additional_tokens=additional_tokens,
            n_times_crossframe_attn_in_self=n_times_crossframe_attn_in_self
            if not self.disable_self_attn
            else 0,
        )
        + x
    )

    x = (
            self.attn2(
                self.norm2(x), context=context, additional_tokens=additional_tokens,
            )
            + x
        )

    if context_ref is not None:
        if self.rendered_feat is not None:
            x = self.pose_emb_layers(torch.cat([x, self.rendered_feat], dim=-1))
        else:
            xref, fg_mask, weights, alphas, predicted_rgb = self.reference_attn(x,
                                                                            context_ref, 
                                                                            context, 
                                                                            pose, 
                                                                            prev_weights, 
                                                                            mask_ref)
            self.rendered_feat = xref
            x = self.pose_emb_layers(torch.cat([x, xref], -1))

    x = self.ff(self.norm3(x)) + x
    return x, fg_mask, weights, alphas, predicted_rgb


def log_images(
        model,
        batch,
        N: int = 1,
        noise=None,
        scale_im=3.5,
        num_steps: int = 10,
        ucg_keys: List[str] = None,
        **kwargs,
        ):

    log = dict()
    conditioner_input_keys = [e.input_keys for e in model.conditioner.embedders]
    ucg_keys = conditioner_input_keys
    pose = batch['pose']

    c, uc = model.conditioner.get_unconditional_conditioning(
        batch,
        force_uc_zero_embeddings=ucg_keys
        if len(model.conditioner.embedders) > 0
        else [],
        force_ref_zero_embeddings=True
    )

    _, n = 1, len(pose)-1
    sampling_kwargs = {}

    if scale_im > 0:
        if uc is not None:
            if isinstance(pose, list):
                pose = pose[:N]*3
            else:
                pose = torch.cat([pose[:N]] * 3)
    else:
        if uc is not None:
            if isinstance(pose, list):
                pose = pose[:N]*2
            else:
                pose = torch.cat([pose[:N]] * 2)

    sampling_kwargs['pose'] = pose
    sampling_kwargs['drop_im'] = None
    sampling_kwargs['mask_ref'] = None

    for k in c:
        if isinstance(c[k], torch.Tensor):
            c[k], uc[k] = map(lambda y: y[k][:(n+1)*N].to('cuda'), (c, uc))

    import time
    st = time.time()
    with model.ema_scope("Plotting"):
        samples = model.sample(
                c, shape=noise.shape[1:], uc=uc, batch_size=N, num_steps=num_steps, noise=noise,  **sampling_kwargs
            )
        model.clear_rendered_feat()
    samples = model.decode_first_stage(samples)
    print("Time taken for sampling", time.time() - st)
    log["samples"] = samples.cpu()

    return log


def process_camera_json(camera_json, example_cam):
    # replace all single quotes in the camera_json with quotes quotes
    camera_json = camera_json.replace("'", "\"")
    print("input camera json")
    print(camera_json)
    
    camera_dict = json.loads(camera_json)["scene.camera"]
    eye = torch.tensor([camera_dict["eye"]["x"], camera_dict["eye"]["y"], camera_dict["eye"]["z"]], dtype=torch.float32).unsqueeze(0)
    up = torch.tensor([camera_dict["up"]["x"], camera_dict["up"]["y"], camera_dict["up"]["z"]], dtype=torch.float32).unsqueeze(0)
    center = torch.tensor([camera_dict["center"]["x"], camera_dict["center"]["y"], camera_dict["center"]["z"]], dtype=torch.float32).unsqueeze(0)
    new_R, new_T = look_at_view_transform(eye=eye, at=center, up=up)  

    print("focal length", example_cam.focal_length)
    print("principal point", example_cam.principal_point)

    newcam = PerspectiveCameras(R=new_R, 
                                T=new_T,
                                focal_length=example_cam.focal_length,
                                principal_point=example_cam.principal_point,
                                image_size=512)
    
    print("input pose")
    print(newcam.get_world_to_view_transform().get_matrix())
    return newcam


def load_and_return_model_and_data(config, model,
        ckpt="pretrained-models/sd_xl_base_1.0.safetensors",
        delta_ckpt=None,
        train=False,
        valid=False,
        far=3,
        num_images=1,
        num_ref=8,
        max_images=20,
):
    config = OmegaConf.load(config)
    # load data
    data = None
    # config.data.params.jitter = False
    # config.data.params.addreg = False
    # config.data.params.bbox = False

    # data = instantiate_from_config(config.data)
    # data = data.train_dataset

    # single_id = data.single_id

    # if hasattr(data, 'rotations'):
    #     total_images = len(data.rotations[data.sequence_list[single_id]])
    # else:
    #     total_images = len(data.annotations['chair'])
    # print(f"Total images in dataset: {total_images}")

    model, msg = load_delta_model(model, delta_ckpt,)
    model = model.cuda()

    # change forward methods to store rendered features and use the pre-calculated reference features
    def register_recr(net_):
        if net_.__class__.__name__ == 'SpatialTransformer':
            print(net_.__class__.__name__, "adding control")
            bound_method = customforward.__get__(net_, net_.__class__)
            setattr(net_, 'forward', bound_method)
            return
        elif hasattr(net_, 'children'):
            for net__ in net_.children():
                register_recr(net__)
        return

    def register_recr2(net_):
        if net_.__class__.__name__ == 'BasicTransformerBlock':
            print(net_.__class__.__name__, "adding control")
            bound_method = _customforward.__get__(net_, net_.__class__)
            setattr(net_, 'forward', bound_method)
            return
        elif hasattr(net_, 'children'):
            for net__ in net_.children():
                register_recr2(net__)
        return

    sub_nets = model.model.diffusion_model.named_children()
    for net in sub_nets:
        register_recr(net[1])
        register_recr2(net[1])

    # start sampling
    model.clear_rendered_feat()

    return model, data


def sample(model, data,
        num_images=1,
        prompt="",
        appendpath="",
        camera_json=None,
        train=False,
        scale=7.5,
        scale_im=3.5,
        beta=1.0,
        num_ref=8,
        skipreflater=False,
        num_steps=10,
        valid=False,
        max_images=20,
        seed=42,
        camera_path="pretrained-models/car0/camera.bin",
    ):

    """
    Only works with num_images=1 (because of camera_json processing)
    """
   
    if num_images != 1:
        print("forcing num_images to be 1")
        num_images = 1
    
    # set guidance scales
    model.sampler.guider.scale_im = scale_im
    model.sampler.guider.scale = scale

    seed_everything(seed)
  
    # load cameras
    cameras_val, cameras_train = torch.load(camera_path)
    global choices
    num_ref = 8
    max_diff = len(cameras_train)/num_ref
    choices = [int(x) for x in torch.linspace(0, len(cameras_train) - max_diff, num_ref)]
    cameras_train_final = [cameras_train[i] for i in choices]
    
    # start sampling
    model.clear_rendered_feat()

    if prompt == "":
        prompt = None

    noise = torch.randn(1, 4, 64, 64).to('cuda').repeat(num_images, 1, 1, 1)

    # random sample camera poses
    pose_ids = np.random.choice(len(cameras_val), num_images, replace=False)
    print(pose_ids)
    pose_ids[0] = 21

    pose = [cameras_val[i] for i in pose_ids]

    print("example camera")
    print(pose[0].R)
    print(pose[0].T)
    print(pose[0].focal_length)
    print(pose[0].principal_point)

    # prepare batches [if translating then call required functions on the target pose]
    batches = []
    for i in range(num_images):
        batch = {'pose': [pose[i]] + cameras_train_final,
                    "original_size_as_tuple": torch.tensor([512, 512]).reshape(-1, 2),
                    "target_size_as_tuple": torch.tensor([512, 512]).reshape(-1, 2),
                    "crop_coords_top_left": torch.tensor([0, 0]).reshape(-1, 2),
                    "original_size_as_tuple_ref": torch.tensor([512, 512]).reshape(-1, 2),
                    "target_size_as_tuple_ref": torch.tensor([512, 512]).reshape(-1, 2),
                    "crop_coords_top_left_ref": torch.tensor([0, 0]).reshape(-1, 2),
                    }
        batch_ = copy.deepcopy(batch)
        batch_["pose"][0] = process_camera_json(camera_json, pose[0])
        batch_["pose"] = [join_cameras_as_batch(batch_["pose"])]
        # print('batched')
        # print(batch_["pose"][0].get_world_to_view_transform().get_matrix())
        batches.append(batch_)

    print(f'len batches: {len(batches)}')

    image = None

    with torch.no_grad():
        for batch in batches:
            for key in batch.keys():
                if isinstance(batch[key], torch.Tensor):
                    batch[key] = batch[key].to('cuda')
                elif 'pose' in key:
                    batch[key] = [x.to('cuda') for x in batch[key]]
                else:
                    pass

            if prompt is not None:
                batch["txt"] = [prompt for _ in range(1)]
                batch["txt_ref"] = [prompt for _ in range(len(batch["pose"])-1)]

            print(batch["txt"])
            N = 1
            log_ = log_images(model, batch, N=N, noise=noise.clone()[:N], num_steps=num_steps, scale_im=scale_im)
            image = log_["samples"]
           
    torch.cuda.empty_cache()
    model.clear_rendered_feat()

    print("generation done")
    return image