Spaces:
Runtime error
Runtime error
File size: 15,909 Bytes
ad7bc89 8d3da67 ad7bc89 a24f25c ad7bc89 8d3da67 ad7bc89 8d3da67 ad7bc89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
import sys
import copy
from typing import List
import numpy as np
import torch
from einops import rearrange
from omegaconf import OmegaConf
from PIL import Image
from pytorch_lightning import seed_everything
from pytorch3d.renderer.cameras import PerspectiveCameras
from pytorch3d.renderer import look_at_view_transform
from pytorch3d.renderer.camera_utils import join_cameras_as_batch
import json
sys.path.append('./custom-diffusion360/')
from sgm.util import instantiate_from_config, load_safetensors
choices = []
def load_base_model(config, ckpt=None, verbose=True):
config = OmegaConf.load(config)
# load model
config.model.params.network_config.params.far = 3
config.model.params.first_stage_config.params.ckpt_path = "pretrained-models/sdxl_vae.safetensors"
guider_config = {'target': 'sgm.modules.diffusionmodules.guiders.ScheduledCFGImgTextRef',
'params': {'scale': 7.5, 'scale_im': 3.5}
}
config.model.params.sampler_config.params.guider_config = guider_config
model = instantiate_from_config(config.model)
if ckpt is not None:
print(f"Loading model from {ckpt}")
if ckpt.endswith("ckpt"):
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
elif ckpt.endswith("safetensors"):
sd = load_safetensors(ckpt)
if 'modifier_token' in config.data.params:
del sd['conditioner.embedders.0.transformer.text_model.embeddings.token_embedding.weight']
del sd['conditioner.embedders.1.model.token_embedding.weight']
else:
raise NotImplementedError
m, u = model.load_state_dict(sd, strict=False)
model.eval()
return model
def load_delta_model(model, delta_ckpt=None, verbose=True, freeze=True):
"""
model is preloaded base stable diffusion model
"""
msg = None
if delta_ckpt is not None:
pl_sd_delta = torch.load(delta_ckpt, map_location="cpu")
sd_delta = pl_sd_delta["delta_state_dict"]
# TODO: add new delta loading embedding stuff?
for name, module in model.model.diffusion_model.named_modules():
if len(name.split('.')) > 1 and name.split('.')[-2] == 'transformer_blocks':
if hasattr(module, 'pose_emb_layers'):
module.register_buffer('references', sd_delta[f'model.diffusion_model.{name}.references'])
del sd_delta[f'model.diffusion_model.{name}.references']
m, u = model.load_state_dict(sd_delta, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
if len(u) > 0 and verbose:
print("unexpected keys:")
if freeze:
for param in model.parameters():
param.requires_grad = False
model.eval()
return model, msg
def get_unique_embedder_keys_from_conditioner(conditioner):
p = [x.input_keys for x in conditioner.embedders]
return list(set([item for sublist in p for item in sublist])) + ['jpg_ref']
def customforward(self, x, xr, context=None, contextr=None, pose=None, mask_ref=None, prev_weights=None, timesteps=None, drop_im=None):
# note: if no context is given, cross-attention defaults to self-attention
if not isinstance(context, list):
context = [context]
b, c, h, w = x.shape
x_in = x
fg_masks = []
alphas = []
rgbs = []
x = self.norm(x)
if not self.use_linear:
x = self.proj_in(x)
x = rearrange(x, "b c h w -> b (h w) c").contiguous()
if self.use_linear:
x = self.proj_in(x)
prev_weights = None
counter = 0
for i, block in enumerate(self.transformer_blocks):
if i > 0 and len(context) == 1:
i = 0 # use same context for each block
if self.image_cross and (counter % self.poscontrol_interval == 0):
x, fg_mask, weights, alpha, rgb = block(x, context=context[i], context_ref=x, pose=pose, mask_ref=mask_ref, prev_weights=prev_weights, drop_im=drop_im)
prev_weights = weights
fg_masks.append(fg_mask)
if alpha is not None:
alphas.append(alpha)
if rgb is not None:
rgbs.append(rgb)
else:
x, _, _, _, _ = block(x, context=context[i], drop_im=drop_im)
counter += 1
if self.use_linear:
x = self.proj_out(x)
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
if not self.use_linear:
x = self.proj_out(x)
if len(fg_masks) > 0:
if len(rgbs) <= 0:
rgbs = None
if len(alphas) <= 0:
alphas = None
return x + x_in, None, fg_masks, prev_weights, alphas, rgbs
else:
return x + x_in, None, None, prev_weights, None, None
def _customforward(
self, x, context=None, context_ref=None, pose=None, mask_ref=None, prev_weights=None, drop_im=None, additional_tokens=None, n_times_crossframe_attn_in_self=0
):
if context_ref is not None:
global choices
batch_size = x.size(0)
# IP2P like sampling or default sampling
if batch_size % 3 == 0:
batch_size = batch_size // 3
context_ref = torch.stack([self.references[:-1][y] for y in choices]).unsqueeze(0).expand(batch_size, -1, -1, -1)
context_ref = torch.cat([self.references[-1:].unsqueeze(0).expand(batch_size, context_ref.size(1), -1, -1), context_ref, context_ref], dim=0)
else:
batch_size = batch_size // 2
context_ref = torch.stack([self.references[:-1][y] for y in choices]).unsqueeze(0).expand(batch_size, -1, -1, -1)
context_ref = torch.cat([self.references[-1:].unsqueeze(0).expand(batch_size, context_ref.size(1), -1, -1), context_ref], dim=0)
fg_mask = None
weights = None
alphas = None
predicted_rgb = None
x = (
self.attn1(
self.norm1(x),
context=context if self.disable_self_attn else None,
additional_tokens=additional_tokens,
n_times_crossframe_attn_in_self=n_times_crossframe_attn_in_self
if not self.disable_self_attn
else 0,
)
+ x
)
x = (
self.attn2(
self.norm2(x), context=context, additional_tokens=additional_tokens,
)
+ x
)
if context_ref is not None:
if self.rendered_feat is not None:
x = self.pose_emb_layers(torch.cat([x, self.rendered_feat], dim=-1))
else:
xref, fg_mask, weights, alphas, predicted_rgb = self.reference_attn(x,
context_ref,
context,
pose,
prev_weights,
mask_ref)
self.rendered_feat = xref
x = self.pose_emb_layers(torch.cat([x, xref], -1))
x = self.ff(self.norm3(x)) + x
return x, fg_mask, weights, alphas, predicted_rgb
def log_images(
model,
batch,
N: int = 1,
noise=None,
scale_im=3.5,
num_steps: int = 10,
ucg_keys: List[str] = None,
**kwargs,
):
log = dict()
conditioner_input_keys = [e.input_keys for e in model.conditioner.embedders]
ucg_keys = conditioner_input_keys
pose = batch['pose']
c, uc = model.conditioner.get_unconditional_conditioning(
batch,
force_uc_zero_embeddings=ucg_keys
if len(model.conditioner.embedders) > 0
else [],
force_ref_zero_embeddings=True
)
_, n = 1, len(pose)-1
sampling_kwargs = {}
if scale_im > 0:
if uc is not None:
if isinstance(pose, list):
pose = pose[:N]*3
else:
pose = torch.cat([pose[:N]] * 3)
else:
if uc is not None:
if isinstance(pose, list):
pose = pose[:N]*2
else:
pose = torch.cat([pose[:N]] * 2)
sampling_kwargs['pose'] = pose
sampling_kwargs['drop_im'] = None
sampling_kwargs['mask_ref'] = None
for k in c:
if isinstance(c[k], torch.Tensor):
c[k], uc[k] = map(lambda y: y[k][:(n+1)*N].to('cuda'), (c, uc))
import time
st = time.time()
with model.ema_scope("Plotting"):
samples = model.sample(
c, shape=noise.shape[1:], uc=uc, batch_size=N, num_steps=num_steps, noise=noise, **sampling_kwargs
)
model.clear_rendered_feat()
samples = model.decode_first_stage(samples)
print("Time taken for sampling", time.time() - st)
log["samples"] = samples.cpu()
return log
def process_camera_json(camera_json, example_cam):
# replace all single quotes in the camera_json with quotes quotes
camera_json = camera_json.replace("'", "\"")
print("input camera json")
print(camera_json)
camera_dict = json.loads(camera_json)["scene.camera"]
eye = torch.tensor([camera_dict["eye"]["x"], camera_dict["eye"]["y"], camera_dict["eye"]["z"]], dtype=torch.float32).unsqueeze(0)
up = torch.tensor([camera_dict["up"]["x"], camera_dict["up"]["y"], camera_dict["up"]["z"]], dtype=torch.float32).unsqueeze(0)
center = torch.tensor([camera_dict["center"]["x"], camera_dict["center"]["y"], camera_dict["center"]["z"]], dtype=torch.float32).unsqueeze(0)
new_R, new_T = look_at_view_transform(eye=eye, at=center, up=up)
print("focal length", example_cam.focal_length)
print("principal point", example_cam.principal_point)
newcam = PerspectiveCameras(R=new_R,
T=new_T,
focal_length=example_cam.focal_length,
principal_point=example_cam.principal_point,
image_size=512)
print("input pose")
print(newcam.get_world_to_view_transform().get_matrix())
return newcam
def load_and_return_model_and_data(config, model,
ckpt="pretrained-models/sd_xl_base_1.0.safetensors",
delta_ckpt=None,
train=False,
valid=False,
far=3,
num_images=1,
num_ref=8,
max_images=20,
):
config = OmegaConf.load(config)
# load data
data = None
# config.data.params.jitter = False
# config.data.params.addreg = False
# config.data.params.bbox = False
# data = instantiate_from_config(config.data)
# data = data.train_dataset
# single_id = data.single_id
# if hasattr(data, 'rotations'):
# total_images = len(data.rotations[data.sequence_list[single_id]])
# else:
# total_images = len(data.annotations['chair'])
# print(f"Total images in dataset: {total_images}")
model, msg = load_delta_model(model, delta_ckpt,)
model = model.cuda()
# change forward methods to store rendered features and use the pre-calculated reference features
def register_recr(net_):
if net_.__class__.__name__ == 'SpatialTransformer':
print(net_.__class__.__name__, "adding control")
bound_method = customforward.__get__(net_, net_.__class__)
setattr(net_, 'forward', bound_method)
return
elif hasattr(net_, 'children'):
for net__ in net_.children():
register_recr(net__)
return
def register_recr2(net_):
if net_.__class__.__name__ == 'BasicTransformerBlock':
print(net_.__class__.__name__, "adding control")
bound_method = _customforward.__get__(net_, net_.__class__)
setattr(net_, 'forward', bound_method)
return
elif hasattr(net_, 'children'):
for net__ in net_.children():
register_recr2(net__)
return
sub_nets = model.model.diffusion_model.named_children()
for net in sub_nets:
register_recr(net[1])
register_recr2(net[1])
# start sampling
model.clear_rendered_feat()
return model, data
def sample(model, data,
num_images=1,
prompt="",
appendpath="",
camera_json=None,
train=False,
scale=7.5,
scale_im=3.5,
beta=1.0,
num_ref=8,
skipreflater=False,
num_steps=10,
valid=False,
max_images=20,
seed=42,
camera_path="pretrained-models/car0/camera.bin",
):
"""
Only works with num_images=1 (because of camera_json processing)
"""
if num_images != 1:
print("forcing num_images to be 1")
num_images = 1
# set guidance scales
model.sampler.guider.scale_im = scale_im
model.sampler.guider.scale = scale
seed_everything(seed)
# load cameras
cameras_val, cameras_train = torch.load(camera_path)
global choices
num_ref = 8
max_diff = len(cameras_train)/num_ref
choices = [int(x) for x in torch.linspace(0, len(cameras_train) - max_diff, num_ref)]
cameras_train_final = [cameras_train[i] for i in choices]
# start sampling
model.clear_rendered_feat()
if prompt == "":
prompt = None
noise = torch.randn(1, 4, 64, 64).to('cuda').repeat(num_images, 1, 1, 1)
# random sample camera poses
pose_ids = np.random.choice(len(cameras_val), num_images, replace=False)
print(pose_ids)
pose_ids[0] = 21
pose = [cameras_val[i] for i in pose_ids]
print("example camera")
print(pose[0].R)
print(pose[0].T)
print(pose[0].focal_length)
print(pose[0].principal_point)
# prepare batches [if translating then call required functions on the target pose]
batches = []
for i in range(num_images):
batch = {'pose': [pose[i]] + cameras_train_final,
"original_size_as_tuple": torch.tensor([512, 512]).reshape(-1, 2),
"target_size_as_tuple": torch.tensor([512, 512]).reshape(-1, 2),
"crop_coords_top_left": torch.tensor([0, 0]).reshape(-1, 2),
"original_size_as_tuple_ref": torch.tensor([512, 512]).reshape(-1, 2),
"target_size_as_tuple_ref": torch.tensor([512, 512]).reshape(-1, 2),
"crop_coords_top_left_ref": torch.tensor([0, 0]).reshape(-1, 2),
}
batch_ = copy.deepcopy(batch)
batch_["pose"][0] = process_camera_json(camera_json, pose[0])
batch_["pose"] = [join_cameras_as_batch(batch_["pose"])]
# print('batched')
# print(batch_["pose"][0].get_world_to_view_transform().get_matrix())
batches.append(batch_)
print(f'len batches: {len(batches)}')
image = None
with torch.no_grad():
for batch in batches:
for key in batch.keys():
if isinstance(batch[key], torch.Tensor):
batch[key] = batch[key].to('cuda')
elif 'pose' in key:
batch[key] = [x.to('cuda') for x in batch[key]]
else:
pass
if prompt is not None:
batch["txt"] = [prompt for _ in range(1)]
batch["txt_ref"] = [prompt for _ in range(len(batch["pose"])-1)]
print(batch["txt"])
N = 1
log_ = log_images(model, batch, N=N, noise=noise.clone()[:N], num_steps=num_steps, scale_im=scale_im)
image = log_["samples"]
torch.cuda.empty_cache()
model.clear_rendered_feat()
print("generation done")
return image
|