Spaces:
Runtime error
Runtime error
File size: 29,767 Bytes
ad7bc89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 |
# code taken and modified from https://github.com/amyxlase/relpose-plus-plus/blob/b33f7d5000cf2430bfcda6466c8e89bc2dcde43f/relpose/dataset/co3d_v2.py#L346)
import os.path as osp
import random
import numpy as np
import torch
import pytorch_lightning as pl
from PIL import Image, ImageFile
import json
import gzip
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
from pytorch3d.renderer.cameras import PerspectiveCameras
from pytorch3d.renderer.camera_utils import join_cameras_as_batch
from pytorch3d.implicitron.dataset.utils import adjust_camera_to_bbox_crop_, adjust_camera_to_image_scale_
from pytorch3d.transforms import Rotate, Translate
CO3D_DIR = "data/training/"
Image.MAX_IMAGE_PIXELS = None
ImageFile.LOAD_TRUNCATED_IMAGES = True
# Added: normalize camera poses
def intersect_skew_line_groups(p, r, mask):
# p, r both of shape (B, N, n_intersected_lines, 3)
# mask of shape (B, N, n_intersected_lines)
p_intersect, r = intersect_skew_lines_high_dim(p, r, mask=mask)
_, p_line_intersect = _point_line_distance(
p, r, p_intersect[..., None, :].expand_as(p)
)
intersect_dist_squared = ((p_line_intersect - p_intersect[..., None, :]) ** 2).sum(
dim=-1
)
return p_intersect, p_line_intersect, intersect_dist_squared, r
def intersect_skew_lines_high_dim(p, r, mask=None):
# Implements https://en.wikipedia.org/wiki/Skew_lines In more than two dimensions
dim = p.shape[-1]
# make sure the heading vectors are l2-normed
if mask is None:
mask = torch.ones_like(p[..., 0])
r = torch.nn.functional.normalize(r, dim=-1)
eye = torch.eye(dim, device=p.device, dtype=p.dtype)[None, None]
I_min_cov = (eye - (r[..., None] * r[..., None, :])) * mask[..., None, None]
sum_proj = I_min_cov.matmul(p[..., None]).sum(dim=-3)
p_intersect = torch.linalg.lstsq(I_min_cov.sum(dim=-3), sum_proj).solution[..., 0]
if torch.any(torch.isnan(p_intersect)):
print(p_intersect)
assert False
return p_intersect, r
def _point_line_distance(p1, r1, p2):
df = p2 - p1
proj_vector = df - ((df * r1).sum(dim=-1, keepdim=True) * r1)
line_pt_nearest = p2 - proj_vector
d = (proj_vector).norm(dim=-1)
return d, line_pt_nearest
def compute_optical_axis_intersection(cameras):
centers = cameras.get_camera_center()
principal_points = cameras.principal_point
one_vec = torch.ones((len(cameras), 1))
optical_axis = torch.cat((principal_points, one_vec), -1)
pp = cameras.unproject_points(optical_axis, from_ndc=True, world_coordinates=True)
pp2 = torch.zeros((pp.shape[0], 3))
for i in range(0, pp.shape[0]):
pp2[i] = pp[i][i]
directions = pp2 - centers
centers = centers.unsqueeze(0).unsqueeze(0)
directions = directions.unsqueeze(0).unsqueeze(0)
p_intersect, p_line_intersect, _, r = intersect_skew_line_groups(
p=centers, r=directions, mask=None
)
p_intersect = p_intersect.squeeze().unsqueeze(0)
dist = (p_intersect - centers).norm(dim=-1)
return p_intersect, dist, p_line_intersect, pp2, r
def normalize_cameras(cameras, scale=1.0):
"""
Normalizes cameras such that the optical axes point to the origin and the average
distance to the origin is 1.
Args:
cameras (List[camera]).
"""
# Let distance from first camera to origin be unit
new_cameras = cameras.clone()
new_transform = new_cameras.get_world_to_view_transform()
p_intersect, dist, p_line_intersect, pp, r = compute_optical_axis_intersection(
cameras
)
t = Translate(p_intersect)
# scale = dist.squeeze()[0]
scale = max(dist.squeeze())
# Degenerate case
if scale == 0:
print(cameras.T)
print(new_transform.get_matrix()[:, 3, :3])
return -1
assert scale != 0
new_transform = t.compose(new_transform)
new_cameras.R = new_transform.get_matrix()[:, :3, :3]
new_cameras.T = new_transform.get_matrix()[:, 3, :3] / scale
return new_cameras, p_intersect, p_line_intersect, pp, r
def centerandalign(cameras, scale=1.0):
"""
Normalizes cameras such that the optical axes point to the origin and the average
distance to the origin is 1.
Args:
cameras (List[camera]).
"""
# Let distance from first camera to origin be unit
new_cameras = cameras.clone()
new_transform = new_cameras.get_world_to_view_transform()
p_intersect, dist, p_line_intersect, pp, r = compute_optical_axis_intersection(
cameras
)
t = Translate(p_intersect)
centers = [cam.get_camera_center() for cam in new_cameras]
centers = torch.concat(centers, 0).cpu().numpy()
m = len(cameras)
# https://math.stackexchange.com/questions/99299/best-fitting-plane-given-a-set-of-points
A = np.hstack((centers[:m, :2], np.ones((m, 1))))
B = centers[:m, 2:]
if A.shape[0] == 2:
x = A.T @ np.linalg.inv(A @ A.T) @ B
else:
x = np.linalg.inv(A.T @ A) @ A.T @ B
a, b, c = x.flatten()
n = np.array([a, b, 1])
n /= np.linalg.norm(n)
# https://math.stackexchange.com/questions/180418/calculate-rotation-matrix-to-align-vector-a-to-vector-b-in-3d
v = np.cross(n, [0, 1, 0])
s = np.linalg.norm(v)
c = np.dot(n, [0, 1, 0])
V = np.array([[0, -v[2], v[1]], [v[2], 0, -v[0]], [-v[1], v[0], 0]])
rot = torch.from_numpy(np.eye(3) + V + V @ V * (1 - c) / s**2).float()
scale = dist.squeeze()[0]
# Degenerate case
if scale == 0:
print(cameras.T)
print(new_transform.get_matrix()[:, 3, :3])
return -1
assert scale != 0
rot = Rotate(rot.T)
new_transform = rot.compose(t).compose(new_transform)
new_cameras.R = new_transform.get_matrix()[:, :3, :3]
new_cameras.T = new_transform.get_matrix()[:, 3, :3] / scale
return new_cameras
def square_bbox(bbox, padding=0.0, astype=None):
"""
Computes a square bounding box, with optional padding parameters.
Args:
bbox: Bounding box in xyxy format (4,).
Returns:
square_bbox in xyxy format (4,).
"""
if astype is None:
astype = type(bbox[0])
bbox = np.array(bbox)
center = ((bbox[:2] + bbox[2:]) / 2).round().astype(int)
extents = (bbox[2:] - bbox[:2]) / 2
s = (max(extents) * (1 + padding)).round().astype(int)
square_bbox = np.array(
[center[0] - s, center[1] - s, center[0] + s, center[1] + s],
dtype=astype,
)
return square_bbox
class Co3dDataset(Dataset):
def __init__(
self,
category,
split="train",
skip=2,
img_size=1024,
num_images=4,
mask_images=False,
single_id=0,
bbox=False,
modifier_token=None,
addreg=False,
drop_ratio=0.5,
drop_txt=0.1,
categoryname=None,
aligncameras=False,
repeat=100,
addlen=False,
onlyref=False,
):
"""
Args:
category (iterable): List of categories to use. If "all" is in the list,
all training categories are used.
num_images (int): Default number of images in each batch.
normalize_cameras (bool): If True, normalizes cameras so that the
intersection of the optical axes is placed at the origin and the norm
of the first camera translation is 1.
mask_images (bool): If True, masks out the background of the images.
"""
# category = CATEGORIES
category = sorted(category.split(','))
self.category = category
self.single_id = single_id
self.addlen = addlen
self.onlyref = onlyref
self.categoryname = categoryname
self.bbox = bbox
self.modifier_token = modifier_token
self.addreg = addreg
self.drop_txt = drop_txt
self.skip = skip
if self.addreg:
with open(f'data/regularization/{category[0]}_sp_generated/caption.txt', "r") as f:
self.regcaptions = f.read().splitlines()
self.reglen = len(self.regcaptions)
self.regimpath = f'data/regularization/{category[0]}_sp_generated'
self.low_quality_translations = []
self.rotations = {}
self.category_map = {}
co3d_dir = CO3D_DIR
for c in category:
subset = 'fewview_dev'
category_dir = osp.join(co3d_dir, c)
frame_file = osp.join(category_dir, "frame_annotations.jgz")
sequence_file = osp.join(category_dir, "sequence_annotations.jgz")
subset_lists_file = osp.join(category_dir, f"set_lists/set_lists_{subset}.json")
bbox_file = osp.join(category_dir, f"{c}_bbox.jgz")
with open(subset_lists_file) as f:
subset_lists_data = json.load(f)
with gzip.open(sequence_file, "r") as fin:
sequence_data = json.loads(fin.read())
with gzip.open(bbox_file, "r") as fin:
bbox_data = json.loads(fin.read())
with gzip.open(frame_file, "r") as fin:
frame_data = json.loads(fin.read())
frame_data_processed = {}
for f_data in frame_data:
sequence_name = f_data["sequence_name"]
if sequence_name not in frame_data_processed:
frame_data_processed[sequence_name] = {}
frame_data_processed[sequence_name][f_data["frame_number"]] = f_data
good_quality_sequences = set()
for seq_data in sequence_data:
if seq_data["viewpoint_quality_score"] > 0.5:
good_quality_sequences.add(seq_data["sequence_name"])
for subset in ["train"]:
for seq_name, frame_number, filepath in subset_lists_data[subset]:
if seq_name not in good_quality_sequences:
continue
if seq_name not in self.rotations:
self.rotations[seq_name] = []
self.category_map[seq_name] = c
mask_path = filepath.replace("images", "masks").replace(".jpg", ".png")
frame_data = frame_data_processed[seq_name][frame_number]
self.rotations[seq_name].append(
{
"filepath": filepath,
"R": frame_data["viewpoint"]["R"],
"T": frame_data["viewpoint"]["T"],
"focal_length": frame_data["viewpoint"]["focal_length"],
"principal_point": frame_data["viewpoint"]["principal_point"],
"mask": mask_path,
"txt": "a car",
"bbox": bbox_data[mask_path]
}
)
for seq_name in self.rotations:
seq_data = self.rotations[seq_name]
cameras = PerspectiveCameras(
focal_length=[data["focal_length"] for data in seq_data],
principal_point=[data["principal_point"] for data in seq_data],
R=[data["R"] for data in seq_data],
T=[data["T"] for data in seq_data],
)
normalized_cameras, _, _, _, _ = normalize_cameras(cameras)
if aligncameras:
normalized_cameras = centerandalign(cameras)
if normalized_cameras == -1:
print("Error in normalizing cameras: camera scale was 0")
del self.rotations[seq_name]
continue
for i, data in enumerate(seq_data):
self.rotations[seq_name][i]["R"] = normalized_cameras.R[i]
self.rotations[seq_name][i]["T"] = normalized_cameras.T[i]
self.rotations[seq_name][i]["R_original"] = torch.from_numpy(np.array(seq_data[i]["R"]))
self.rotations[seq_name][i]["T_original"] = torch.from_numpy(np.array(seq_data[i]["T"]))
# Make sure translations are not ridiculous
if self.rotations[seq_name][i]["T"][0] + self.rotations[seq_name][i]["T"][1] + self.rotations[seq_name][i]["T"][2] > 1e5:
bad_seq = True
self.low_quality_translations.append(seq_name)
break
for seq_name in self.low_quality_translations:
if seq_name in self.rotations:
del self.rotations[seq_name]
self.sequence_list = list(self.rotations.keys())
self.transform = transforms.Compose(
[
transforms.Resize(img_size, interpolation=transforms.InterpolationMode.BICUBIC),
transforms.ToTensor(),
transforms.Lambda(lambda x: x * 2.0 - 1.0)
]
)
self.transformim = transforms.Compose(
[
transforms.Resize(img_size, interpolation=transforms.InterpolationMode.BICUBIC),
transforms.CenterCrop(img_size),
transforms.ToTensor(),
transforms.Lambda(lambda x: x * 2.0 - 1.0)
]
)
self.transformmask = transforms.Compose(
[
transforms.Resize(img_size // 8),
transforms.ToTensor(),
]
)
self.num_images = num_images
self.image_size = img_size
self.normalize_cameras = normalize_cameras
self.mask_images = mask_images
self.drop_ratio = drop_ratio
self.kernel_tensor = torch.ones((1, 1, 7, 7))
self.repeat = repeat
print(self.sequence_list, "$$$$$$$$$$$$$$$$$$$$$")
self.valid_ids = np.arange(0, len(self.rotations[self.sequence_list[self.single_id]]), skip).tolist()
if split == 'test':
self.valid_ids = list(set(np.arange(0, len(self.rotations[self.sequence_list[self.single_id]])).tolist()).difference(self.valid_ids))
print(
f"Low quality translation sequences, not used: {self.low_quality_translations}"
)
print(f"Data size: {len(self)}")
def __len__(self):
return (len(self.valid_ids))*self.repeat + (1 if self.addlen else 0)
def _padded_bbox(self, bbox, w, h):
if w < h:
bbox = np.array([0, 0, w, h])
else:
bbox = np.array([0, 0, w, h])
return square_bbox(bbox.astype(np.float32))
def _crop_bbox(self, bbox, w, h):
bbox = square_bbox(bbox.astype(np.float32))
side_length = bbox[2] - bbox[0]
center = (bbox[:2] + bbox[2:]) / 2
extent = side_length / 2
# Final coordinates need to be integer for cropping.
ul = (center - extent).round().astype(int)
lr = ul + np.round(2 * extent).astype(int)
return np.concatenate((ul, lr))
def _crop_image(self, image, bbox, white_bg=False):
if white_bg:
# Only support PIL Images
image_crop = Image.new(
"RGB", (bbox[2] - bbox[0], bbox[3] - bbox[1]), (255, 255, 255)
)
image_crop.paste(image, (-bbox[0], -bbox[1]))
else:
image_crop = transforms.functional.crop(
image,
top=bbox[1],
left=bbox[0],
height=bbox[3] - bbox[1],
width=bbox[2] - bbox[0],
)
return image_crop
def __getitem__(self, index, specific_id=None, validation=False):
sequence_name = self.sequence_list[self.single_id]
metadata = self.rotations[sequence_name]
if validation:
drop_text = False
drop_im = False
else:
drop_im = np.random.uniform(0, 1) < self.drop_ratio
if not drop_im:
drop_text = np.random.uniform(0, 1) < self.drop_txt
else:
drop_text = False
size = self.image_size
# sample reference ids
listofindices = self.valid_ids.copy()
max_diff = len(listofindices) // (self.num_images-1)
if (index*self.skip) % len(metadata) in listofindices:
listofindices.remove((index*self.skip) % len(metadata))
references = np.random.choice(np.arange(0, len(listofindices)+1, max_diff), self.num_images-1, replace=False)
rem = np.random.randint(0, max_diff)
references = [listofindices[(x + rem) % len(listofindices)] for x in references]
ids = [(index*self.skip) % len(metadata)] + references
# special case to save features corresponding to ref image as part of model buffer
if self.onlyref:
ids = references + [(index*self.skip) % len(metadata)]
if specific_id is not None: # remove this later
ids = specific_id
# get data
batch = self.get_data(index=self.single_id, ids=ids)
# text prompt
if self.modifier_token is not None:
name = self.category[0] if self.categoryname is None else self.categoryname
batch['txt'] = [f'photo of a {self.modifier_token} {name}' for _ in range(len(batch['txt']))]
# replace with regularization image if drop_im
if drop_im and self.addreg:
select_id = np.random.randint(0, self.reglen)
batch["image"] = [self.transformim(Image.open(f'{self.regimpath}/images/{select_id}.png').convert('RGB'))]
batch['txt'] = [self.regcaptions[select_id]]
batch["original_size_as_tuple"] = torch.ones_like(batch["original_size_as_tuple"])*1024
# create camera class and adjust intrinsics for crop
cameras = [PerspectiveCameras(R=batch['R'][i].unsqueeze(0),
T=batch['T'][i].unsqueeze(0),
focal_length=batch['focal_lengths'][i].unsqueeze(0),
principal_point=batch['principal_points'][i].unsqueeze(0),
image_size=self.image_size
)
for i in range(len(ids))]
for i, cam in enumerate(cameras):
adjust_camera_to_bbox_crop_(cam, batch["original_size_as_tuple"][i, :2], batch["crop_coords"][i])
adjust_camera_to_image_scale_(cam, batch["original_size_as_tuple"][i, 2:], torch.tensor([self.image_size, self.image_size]))
# create mask and dilated mask for mask based losses
batch["depth"] = batch["mask"].clone()
batch["mask"] = torch.clamp(torch.nn.functional.conv2d(batch["mask"], self.kernel_tensor, padding='same'), 0, 1)
if not self.mask_images:
batch["mask"] = [None for i in range(len(ids))]
# special case to save features corresponding to zero image
if index == self.__len__()-1 and self.addlen:
batch["image"][0] *= 0.
return {"jpg": batch["image"][0],
"txt": batch["txt"][0] if not drop_text else "",
"jpg_ref": batch["image"][1:] if not drop_im else torch.stack([2*torch.rand_like(batch["image"][0])-1. for _ in range(len(ids)-1)], dim=0),
"txt_ref": batch["txt"][1:] if not drop_im else ["" for _ in range(len(ids)-1)],
"pose": cameras,
"mask": batch["mask"][0] if not drop_im else torch.ones_like(batch["mask"][0]),
"mask_ref": batch["masks_padding"][1:],
"depth": batch["depth"][0] if len(batch["depth"]) > 0 else None,
"filepaths": batch["filepaths"],
"original_size_as_tuple": batch["original_size_as_tuple"][0][2:],
"target_size_as_tuple": torch.ones_like(batch["original_size_as_tuple"][0][2:])*size,
"crop_coords_top_left": torch.zeros_like(batch["crop_coords"][0][:2]),
"original_size_as_tuple_ref": batch["original_size_as_tuple"][1:][:, 2:],
"target_size_as_tuple_ref": torch.ones_like(batch["original_size_as_tuple"][1:][:, 2:])*size,
"crop_coords_top_left_ref": torch.zeros_like(batch["crop_coords"][1:][:, :2]),
"drop_im": torch.Tensor([1-drop_im*1.])
}
def get_data(self, index=None, sequence_name=None, ids=(0, 1)):
if sequence_name is None:
sequence_name = self.sequence_list[index]
metadata = self.rotations[sequence_name]
category = self.category_map[sequence_name]
annos = [metadata[i] for i in ids]
images = []
rotations = []
translations = []
focal_lengths = []
principal_points = []
txts = []
masks = []
filepaths = []
images_transformed = []
masks_transformed = []
original_size_as_tuple = []
crop_parameters = []
masks_padding = []
depths = []
for counter, anno in enumerate(annos):
filepath = anno["filepath"]
filepaths.append(filepath)
image = Image.open(osp.join(CO3D_DIR, filepath)).convert("RGB")
mask_name = osp.basename(filepath.replace(".jpg", ".png"))
mask_path = osp.join(
CO3D_DIR, category, sequence_name, "masks", mask_name
)
mask = Image.open(mask_path).convert("L")
if mask.size != image.size:
mask = mask.resize(image.size)
mask_padded = Image.fromarray((np.ones_like(mask) > 0))
mask = Image.fromarray((np.array(mask) > 125))
masks.append(mask)
# crop image around object
w, h = image.width, image.height
bbox = np.array(anno["bbox"])
if len(bbox) == 0:
bbox = np.array([0, 0, w, h])
if self.bbox and counter > 0:
bbox = self._crop_bbox(bbox, w, h)
else:
bbox = self._padded_bbox(None, w, h)
image = self._crop_image(image, bbox)
mask = self._crop_image(mask, bbox)
mask_padded = self._crop_image(mask_padded, bbox)
masks_padding.append(self.transformmask(mask_padded))
images_transformed.append(self.transform(image))
masks_transformed.append(self.transformmask(mask))
crop_parameters.append(torch.tensor([bbox[0], bbox[1], bbox[2] - bbox[0], bbox[3] - bbox[1] ]).int())
original_size_as_tuple.append(torch.tensor([w, h, bbox[2] - bbox[0], bbox[3] - bbox[1]]))
images.append(image)
rotations.append(anno["R"])
translations.append(anno["T"])
focal_lengths.append(torch.tensor(anno["focal_length"]))
principal_points.append(torch.tensor(anno["principal_point"]))
txts.append(anno["txt"])
images = images_transformed
batch = {
"model_id": sequence_name,
"category": category,
"original_size_as_tuple": torch.stack(original_size_as_tuple),
"crop_coords": torch.stack(crop_parameters),
"n": len(metadata),
"ind": torch.tensor(ids),
"txt": txts,
"filepaths": filepaths,
"masks_padding": torch.stack(masks_padding) if len(masks_padding) > 0 else [],
"depth": torch.stack(depths) if len(depths) > 0 else [],
}
batch["R"] = torch.stack(rotations)
batch["T"] = torch.stack(translations)
batch["focal_lengths"] = torch.stack(focal_lengths)
batch["principal_points"] = torch.stack(principal_points)
# Add images
if self.transform is None:
batch["image"] = images
else:
batch["image"] = torch.stack(images)
batch["mask"] = torch.stack(masks_transformed)
return batch
@staticmethod
def collate_fn(batch):
"""A function to collate the data across batches. This function must be passed to pytorch's DataLoader to collate batches.
Args:
batch(list): List of objects returned by this class' __getitem__ function. This is given by pytorch's dataloader that calls __getitem__
multiple times and expects a collated batch.
Returns:
dict: The collated dictionary representing the data in the batch.
"""
result = {
"jpg": [],
"txt": [],
"jpg_ref": [],
"txt_ref": [],
"pose": [],
"original_size_as_tuple": [],
"original_size_as_tuple_ref": [],
"crop_coords_top_left": [],
"crop_coords_top_left_ref": [],
"target_size_as_tuple_ref": [],
"target_size_as_tuple": [],
"drop_im": [],
"mask_ref": [],
}
if batch[0]["mask"] is not None:
result["mask"] = []
if batch[0]["depth"] is not None:
result["depth"] = []
for batch_obj in batch:
for key in result.keys():
result[key].append(batch_obj[key])
for key in result.keys():
if not (key == 'pose' or 'txt' in key or 'size_as_tuple_ref' in key or 'coords_top_left_ref' in key):
result[key] = torch.stack(result[key], dim=0)
elif 'txt_ref' in key:
result[key] = [item for sublist in result[key] for item in sublist]
elif 'size_as_tuple_ref' in key or 'coords_top_left_ref' in key:
result[key] = torch.cat(result[key], dim=0)
elif 'pose' in key:
result[key] = [join_cameras_as_batch(cameras) for cameras in result[key]]
return result
class CustomDataDictLoader(pl.LightningDataModule):
def __init__(
self,
category,
batch_size,
mask_images=False,
skip=1,
img_size=1024,
num_images=4,
num_workers=0,
shuffle=True,
single_id=0,
modifier_token=None,
bbox=False,
addreg=False,
drop_ratio=0.5,
jitter=False,
drop_txt=0.1,
categoryname=None,
):
super().__init__()
self.batch_size = batch_size
self.num_workers = num_workers
self.shuffle = shuffle
self.train_dataset = Co3dDataset(category,
img_size=img_size,
mask_images=mask_images,
skip=skip,
num_images=num_images,
single_id=single_id,
modifier_token=modifier_token,
bbox=bbox,
addreg=addreg,
drop_ratio=drop_ratio,
drop_txt=drop_txt,
categoryname=categoryname,
)
self.val_dataset = Co3dDataset(category,
img_size=img_size,
mask_images=mask_images,
skip=skip,
num_images=2,
single_id=single_id,
modifier_token=modifier_token,
bbox=bbox,
addreg=addreg,
drop_ratio=0.,
drop_txt=0.,
categoryname=categoryname,
repeat=1,
addlen=True,
onlyref=True,
)
self.test_dataset = Co3dDataset(category,
img_size=img_size,
mask_images=mask_images,
split="test",
skip=skip,
num_images=2,
single_id=single_id,
modifier_token=modifier_token,
bbox=False,
addreg=addreg,
drop_ratio=0.,
drop_txt=0.,
categoryname=categoryname,
repeat=1,
)
self.collate_fn = Co3dDataset.collate_fn
def prepare_data(self):
pass
def train_dataloader(self):
return DataLoader(
self.train_dataset,
batch_size=self.batch_size,
shuffle=self.shuffle,
num_workers=self.num_workers,
collate_fn=self.collate_fn,
drop_last=True,
)
def test_dataloader(self):
return DataLoader(
self.train_dataset,
batch_size=self.batch_size,
shuffle=False,
num_workers=self.num_workers,
collate_fn=self.collate_fn,
)
def val_dataloader(self):
return DataLoader(
self.val_dataset,
batch_size=self.batch_size,
shuffle=False,
num_workers=self.num_workers,
collate_fn=self.collate_fn,
drop_last=True
)
|