File size: 21,660 Bytes
ad7bc89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
from contextlib import contextmanager
from typing import Any, Dict, List, Tuple, Union, DefaultDict

import pytorch_lightning as pl
import torch
from omegaconf import ListConfig, OmegaConf
from safetensors.torch import load_file as load_safetensors
from torch.optim.lr_scheduler import LambdaLR
from einops import rearrange
import math
import torch.nn as nn
from ..modules import UNCONDITIONAL_CONFIG
from ..modules.diffusionmodules.wrappers import OPENAIUNETWRAPPER
from ..modules.ema import LitEma
from ..util import (
    default,
    disabled_train,
    get_obj_from_str,
    instantiate_from_config,
    log_txt_as_img,
)


import collections
from functools import partial


def save_activations(
        activations: DefaultDict,
        name: str,
        module: nn.Module,
        inp: Tuple,
        out: torch.Tensor
) -> None:
    """PyTorch Forward hook to save outputs at each forward
    pass. Mutates specified dict objects with each fwd pass.
    """
    if isinstance(out, tuple):
        if out[1] is None:
            activations[name].append(out[0].detach())

class DiffusionEngine(pl.LightningModule):
    def __init__(
        self,
        network_config,
        denoiser_config,
        first_stage_config,
        conditioner_config: Union[None, Dict, ListConfig, OmegaConf] = None,
        sampler_config: Union[None, Dict, ListConfig, OmegaConf] = None,
        optimizer_config: Union[None, Dict, ListConfig, OmegaConf] = None,
        scheduler_config: Union[None, Dict, ListConfig, OmegaConf] = None,
        loss_fn_config: Union[None, Dict, ListConfig, OmegaConf] = None,
        network_wrapper: Union[None, str] = None,
        ckpt_path: Union[None, str] = None,
        use_ema: bool = False,
        ema_decay_rate: float = 0.9999,
        scale_factor: float = 1.0,
        disable_first_stage_autocast=False,
        input_key: str = "jpg",
        log_keys: Union[List, None] = None,
        no_cond_log: bool = False,
        compile_model: bool = False,
        trainkeys='pose',
        multiplier=0.05,
        loss_rgb_lambda=20.,
        loss_fg_lambda=10.,
        loss_bg_lambda=20.,
    ):
        super().__init__()
        self.log_keys = log_keys
        self.input_key = input_key
        self.trainkeys = trainkeys
        self.multiplier = multiplier
        self.loss_rgb_lambda = loss_rgb_lambda
        self.loss_fg_lambda = loss_fg_lambda
        self.loss_bg_lambda = loss_bg_lambda
        self.rgb = network_config.params.rgb
        self.rgb_predict = network_config.params.rgb_predict
        self.add_token = ('modifier_token' in conditioner_config.params.emb_models[1].params)
        self.optimizer_config = default(
            optimizer_config, {"target": "torch.optim.AdamW"}
        )
        model = instantiate_from_config(network_config)
        self.model = get_obj_from_str(default(network_wrapper, OPENAIUNETWRAPPER))(
            model, compile_model=compile_model
        )

        self.denoiser = instantiate_from_config(denoiser_config)
        self.sampler = (
            instantiate_from_config(sampler_config)
            if sampler_config is not None
            else None
        )
        self.conditioner = instantiate_from_config(
            default(conditioner_config, UNCONDITIONAL_CONFIG)
        )
        self.scheduler_config = scheduler_config
        self._init_first_stage(first_stage_config)

        self.loss_fn = (
            instantiate_from_config(loss_fn_config)
            if loss_fn_config is not None
            else None
        )

        self.use_ema = use_ema
        if self.use_ema:
            self.model_ema = LitEma(self.model, decay=ema_decay_rate)
            print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")

        self.scale_factor = scale_factor
        self.disable_first_stage_autocast = disable_first_stage_autocast
        self.no_cond_log = no_cond_log

        if ckpt_path is not None:
            self.init_from_ckpt(ckpt_path)

        blocks = []
        if self.trainkeys == 'poseattn':
            for x in self.model.diffusion_model.named_parameters():
                if not ('pose' in x[0] or 'transformer_blocks' in x[0]):
                    x[1].requires_grad = False
                else:
                    if 'pose' in x[0]:
                        x[1].requires_grad = True
                        blocks.append(x[0].split('.pose')[0])

            blocks = set(blocks)
            for x in self.model.diffusion_model.named_parameters():
                if 'transformer_blocks' in x[0]:
                    reqgrad = False
                    for each in blocks:
                        if each in x[0] and ('attn1' in x[0] or 'attn2' in x[0] or 'pose' in x[0]):
                            reqgrad = True
                            x[1].requires_grad = True
                    if not reqgrad:
                        x[1].requires_grad = False
        elif self.trainkeys == 'pose':
            for x in self.model.diffusion_model.named_parameters():
                if not ('pose' in x[0]):
                    x[1].requires_grad = False
                else:
                    x[1].requires_grad = True
        elif self.trainkeys == 'all':
            for x in self.model.diffusion_model.named_parameters():
                x[1].requires_grad = True

        self.model = self.model.to(memory_format=torch.channels_last)

    def register_activation_hooks(
            self,
    ) -> None:
        self.activations_dict = collections.defaultdict(list)
        handles = []
        for name, module in self.model.diffusion_model.named_modules():
            if len(name.split('.')) > 1 and name.split('.')[-2] == 'transformer_blocks':
                if hasattr(module, 'pose_emb_layers'):
                    handle = module.register_forward_hook(
                        partial(save_activations, self.activations_dict, name)
                    )
                    handles.append(handle)
        self.handles = handles

    def clear_rendered_feat(self,):
        for name, module in self.model.diffusion_model.named_modules():
            if len(name.split('.')) > 1 and name.split('.')[-2] == 'transformer_blocks':
                if hasattr(module, 'pose_emb_layers'):
                    module.rendered_feat = None

    def remove_activation_hooks(
            self, handles
    ) -> None:
        for handle in handles:
            handle.remove()

    def init_from_ckpt(
        self,
        path: str,
    ) -> None:
        if path.endswith("ckpt"):
            sd = torch.load(path, map_location="cpu")["state_dict"]
        elif path.endswith("safetensors"):
            sd = load_safetensors(path)
        else:
            raise NotImplementedError

        missing, unexpected = self.load_state_dict(sd, strict=False)
        print(
            f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys"
        )
        if len(missing) > 0:
            print(f"Missing Keys: {missing}")
        if len(unexpected) > 0:
            print(f"Unexpected Keys: {unexpected}")

    def _init_first_stage(self, config):
        model = instantiate_from_config(config).eval()
        model.train = disabled_train
        for param in model.parameters():
            param.requires_grad = False
        self.first_stage_model = model

    def get_input(self, batch):
        return batch[self.input_key], batch[self.input_key + '_ref'] if self.input_key + '_ref' in batch else None, batch['pose'] if 'pose' in batch else None, batch['mask'] if "mask" in batch else None, batch['mask_ref'] if "mask_ref" in batch else None, batch['depth'] if "depth" in batch else None, batch['drop_im'] if "drop_im" in batch else 0.

    @torch.no_grad()
    def decode_first_stage(self, z):
        z = 1.0 / self.scale_factor * z
        with torch.autocast("cuda", enabled=not self.disable_first_stage_autocast):
            out = self.first_stage_model.decode(z)
        return out

    @torch.no_grad()
    def encode_first_stage(self, x):
        with torch.autocast("cuda", enabled=not self.disable_first_stage_autocast):
            z = self.first_stage_model.encode(x)
        z = self.scale_factor * z
        return z

    def forward(self, x, x_rgb, xr, pose, mask, mask_ref, opacity, drop_im, batch):
        loss, loss_fg, loss_bg, loss_rgb = self.loss_fn(self.model, self.denoiser, self.conditioner, x, x_rgb, xr, pose, mask, mask_ref, opacity, batch)
        loss_mean = loss.mean()
        loss_dict = {"loss": loss_mean.item()}
        if self.rgb and self.global_step > 0:
            loss_fg = (loss_fg.mean(1)*drop_im.reshape(-1)).sum()/(drop_im.sum() + 1e-12)
            loss_bg = (loss_bg.mean(1)*drop_im.reshape(-1)).sum()/(drop_im.sum() + 1e-12)
            loss_mean += self.loss_fg_lambda*loss_fg
            loss_mean += self.loss_bg_lambda*loss_bg
            loss_dict["loss_fg"] = loss_fg.item()
            loss_dict["loss_bg"] = loss_bg.item()
        if self.rgb_predict and loss_rgb.mean() > 0:
            loss_rgb = (loss_rgb.mean(1)*drop_im.reshape(-1)).sum()/(drop_im.sum() + 1e-12)
            loss_mean += self.loss_rgb_lambda*loss_rgb
            loss_dict["loss_rgb"] = loss_rgb.item()
        return loss_mean, loss_dict

    def shared_step(self, batch: Dict) -> Any:
        x, xr, pose, mask, mask_ref, opacity, drop_im = self.get_input(batch)
        x_rgb = x.clone().detach()
        x = self.encode_first_stage(x)
        x = x.to(memory_format=torch.channels_last)
        if xr is not None:
            b, n = xr.shape[0], xr.shape[1]
            xr = rearrange(self.encode_first_stage(rearrange(xr, "b n ... -> (b n) ...")), "(b n) ... -> b n ...", b=b, n=n)
            xr = drop_im.reshape(b, 1, 1, 1, 1)*xr + (1-drop_im.reshape(b, 1, 1, 1, 1))*torch.zeros_like(xr)
        batch["global_step"] = self.global_step
        loss, loss_dict = self(x, x_rgb, xr, pose, mask, mask_ref, opacity, drop_im, batch)
        return loss, loss_dict

    def training_step(self, batch, batch_idx):
        loss, loss_dict = self.shared_step(batch)

        self.log_dict(
            loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=False
        )

        self.log(
            "global_step",
            self.global_step,
            prog_bar=True,
            logger=True,
            on_step=True,
            on_epoch=False,
        )

        if self.scheduler_config is not None:
            lr = self.optimizers().param_groups[0]["lr"]
            self.log(
                "lr_abs", lr, prog_bar=True, logger=True, on_step=True, on_epoch=False
            )
        return loss

    def validation_step(self, batch, batch_idx):
        # print("validation data", len(self.trainer.val_dataloaders))
        loss, loss_dict = self.shared_step(batch)
        return loss

    def on_train_start(self, *args, **kwargs):
        if self.sampler is None or self.loss_fn is None:
            raise ValueError("Sampler and loss function need to be set for training.")

    def on_train_batch_end(self, *args, **kwargs):
        if self.use_ema:
            self.model_ema(self.model)

    def optimizer_zero_grad(self, epoch, batch_idx, optimizer):
        optimizer.zero_grad(set_to_none=True)

    @contextmanager
    def ema_scope(self, context=None):
        if self.use_ema:
            self.model_ema.store(self.model.parameters())
            self.model_ema.copy_to(self.model)
            if context is not None:
                print(f"{context}: Switched to EMA weights")
        try:
            yield None
        finally:
            if self.use_ema:
                self.model_ema.restore(self.model.parameters())
                if context is not None:
                    print(f"{context}: Restored training weights")

    def instantiate_optimizer_from_config(self, params, lr, cfg):
        return get_obj_from_str(cfg["target"])(
            params, lr=lr, **cfg.get("params", dict())
        )

    def configure_optimizers(self):
        lr = self.learning_rate
        params = []
        blocks = []
        lowlrparams = []
        if self.trainkeys == 'poseattn':
            lowlrparams = []
            for x in self.model.diffusion_model.named_parameters():
                if ('pose' in x[0]):
                    params += [x[1]]
                    blocks.append(x[0].split('.pose')[0])
                    print(x[0])
            blocks = set(blocks)
            for x in self.model.diffusion_model.named_parameters():
                if 'transformer_blocks' in x[0]:
                    for each in blocks:
                        if each in x[0] and not ('pose' in x[0]) and ('attn1' in x[0] or 'attn2' in x[0]):
                            lowlrparams += [x[1]]
        elif self.trainkeys == 'pose':
            for x in self.model.diffusion_model.named_parameters():
                if ('pose' in x[0]):
                    params += [x[1]]
                    print(x[0])  
        elif self.trainkeys == 'all':
            lowlrparams = []
            for x in self.model.diffusion_model.named_parameters():
                if ('pose' in x[0]):
                    params += [x[1]]
                    print(x[0])
                else:
                    lowlrparams += [x[1]]

        for i, embedder in enumerate(self.conditioner.embedders[:2]):
            if embedder.is_trainable:
                params = params + list(embedder.parameters())
            if self.add_token:
                if i == 0:
                    for name, param in embedder.transformer.get_input_embeddings().named_parameters():
                        param.requires_grad = True
                        print(name, "conditional model param")
                        params += [param]
                else:
                    for name, param in embedder.model.token_embedding.named_parameters():
                        param.requires_grad = True
                        print(name, "conditional model param")
                        params += [param]

        if len(lowlrparams) > 0:
            print("different optimizer groups")
            opt = self.instantiate_optimizer_from_config([{'params': params}, {'params': lowlrparams, 'lr': self.multiplier*lr}], lr, self.optimizer_config)
        else:
            opt = self.instantiate_optimizer_from_config(params, lr, self.optimizer_config)
        if self.scheduler_config is not None:
            scheduler = instantiate_from_config(self.scheduler_config)
            print("Setting up LambdaLR scheduler...")
            scheduler = [
                {
                    "scheduler": LambdaLR(opt, lr_lambda=scheduler.schedule),
                    "interval": "step",
                    "frequency": 1,
                }
            ]
            return [opt], scheduler
        return opt

    @torch.no_grad()
    def sample(
        self,
        cond: Dict,
        uc: Union[Dict, None] = None,
        batch_size: int = 16,
        num_steps=None,
        randn=None,
        shape: Union[None, Tuple, List] = None,
        return_rgb=False,
        mask=None,
        init_im=None,
        **kwargs,
    ):
        if randn is None:
            randn = torch.randn(batch_size, *shape)

        denoiser = lambda input, sigma, c: self.denoiser(
            self.model, input, sigma, c, **kwargs
        )
        if mask is not None:
            samples, rgb_list = self.sampler(denoiser, randn.to(self.device), cond, uc=uc, mask=mask, init_im=init_im, num_steps=num_steps)
        else:
            samples, rgb_list = self.sampler(denoiser, randn.to(self.device), cond, uc=uc, num_steps=num_steps)
        if return_rgb:
            return samples, rgb_list
        return samples

    @torch.no_grad()
    def samplemulti(
        self,
        cond,
        uc=None,
        batch_size: int = 16,
        num_steps=None,
        randn=None,
        shape: Union[None, Tuple, List] = None,
        return_rgb=False,
        mask=None,
        init_im=None,
        multikwargs=None,
    ):
        if randn is None:
            randn = torch.randn(batch_size, *shape)

        samples, rgb_list = self.sampler(self.denoiser, self.model, randn.to(self.device), cond, uc=uc, num_steps=num_steps, multikwargs=multikwargs)
        if return_rgb:
            return samples, rgb_list
        return samples

    @torch.no_grad()
    def log_conditionings(self, batch: Dict, n: int, refernce: bool = True) -> Dict:
        """
        Defines heuristics to log different conditionings.
        These can be lists of strings (text-to-image), tensors, ints, ...
        """
        image_h, image_w = batch[self.input_key].shape[2:]
        log = dict()

        for embedder in self.conditioner.embedders:
            if refernce:
                check = (embedder.input_keys[0] in self.log_keys)
            else:
                check = (embedder.input_key in self.log_keys)
            if (
                (self.log_keys is None) or check
            ) and not self.no_cond_log:
                if refernce:
                    x = batch[embedder.input_keys[0]][:n]
                else:
                    x = batch[embedder.input_key][:n]
                if isinstance(x, torch.Tensor):
                    if x.dim() == 1:
                        # class-conditional, convert integer to string
                        x = [str(x[i].item()) for i in range(x.shape[0])]
                        xc = log_txt_as_img((image_h, image_w), x, size=image_h // 4)
                    elif x.dim() == 2:
                        # size and crop cond and the like
                        x = [
                            "x".join([str(xx) for xx in x[i].tolist()])
                            for i in range(x.shape[0])
                        ]
                        xc = log_txt_as_img((image_h, image_w), x, size=image_h // 20)
                    else:
                        raise NotImplementedError()
                elif isinstance(x, (List, ListConfig)):
                    if isinstance(x[0], str):
                        # strings
                        xc = log_txt_as_img((image_h, image_w), x, size=image_h // 20)
                    else:
                        raise NotImplementedError()
                else:
                    raise NotImplementedError()
                if refernce:
                    log[embedder.input_keys[0]] = xc
                else:
                    log[embedder.input_key] = xc
        return log

    @torch.no_grad()
    def log_images(
        self,
        batch: Dict,
        N: int = 8,
        sample: bool = True,
        ucg_keys: List[str] = None,
        **kwargs,
    ) -> Dict:
        log = dict()

        x, xr, pose, mask, mask_ref, depth, drop_im = self.get_input(batch)

        if xr is not None:
            conditioner_input_keys = [e.input_keys for e in self.conditioner.embedders]
        else:
            conditioner_input_keys = [e.input_key for e in self.conditioner.embedders]

        if ucg_keys:
            assert all(map(lambda x: x in conditioner_input_keys, ucg_keys)), (
                "Each defined ucg key for sampling must be in the provided conditioner input keys,"
                f"but we have {ucg_keys} vs. {conditioner_input_keys}"
            )
        else:
            ucg_keys = conditioner_input_keys

        c, uc = self.conditioner.get_unconditional_conditioning(
            batch,
            force_uc_zero_embeddings=ucg_keys
            if len(self.conditioner.embedders) > 0
            else [],
        )

        N = min(x.shape[0], N)
        x = x.to(self.device)[:N]
        zr = None
        if xr is not None:
            xr = xr.to(self.device)[:N]
            b, n = xr.shape[0], xr.shape[1]
            log["reference"] = rearrange(xr, "b n ... -> (b n) ...", b=b, n=n)
            zr = rearrange(self.encode_first_stage(rearrange(xr, "b n ... -> (b n) ...", b=b, n=n)), "(b n) ... -> b n ...", b=b, n=n)

        log["inputs"] = x
        b = x.shape[0]
        if mask is not None:
            log["mask"] = mask
        if depth is not None:
            log["depth"] = depth
        z = self.encode_first_stage(x)

        if uc is not None:
            if xr is not None:
                zr = torch.cat([torch.zeros_like(zr), zr])
            drop_im = torch.cat([drop_im, drop_im])
            if isinstance(pose, list):
                pose = pose[:N]*2
            else:
                pose = torch.cat([pose[:N]] * 2)

        sampling_kwargs = {'input_ref':zr}
        sampling_kwargs['pose'] = pose
        sampling_kwargs['mask_ref'] = None
        sampling_kwargs['drop_im'] = drop_im

        log["reconstructions"] = self.decode_first_stage(z)
        log.update(self.log_conditionings(batch, N, refernce=True if xr is not None else False))

        for k in c:
            if isinstance(c[k], torch.Tensor):
                if xr is not None:
                    c[k], uc[k] = map(lambda y: y[k][:(n+1)*N].to(self.device), (c, uc))
                else:
                    c[k], uc[k] = map(lambda y: y[k][:N].to(self.device), (c, uc))
        if sample:
            with self.ema_scope("Plotting"):
                samples, rgb_list = self.sample(
                    c, shape=z.shape[1:], uc=uc, batch_size=N, return_rgb=True, **sampling_kwargs
                )
            samples = self.decode_first_stage(samples)
            log["samples"] = samples
            if len(rgb_list) > 0:
                size = int(math.sqrt(rgb_list[0].size(1)))
                log["predicted_rgb"] = rgb_list[0].reshape(-1, size, size, 3).permute(0, 3, 1, 2)
        return log