Spaces:
Runtime error
Runtime error
File size: 15,055 Bytes
ad7bc89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
#### Code taken from: https://github.com/mayankgrwl97/gbt
"""Utils for ray manipulation"""
import numpy as np
import torch
from pytorch3d.renderer.implicit.raysampling import RayBundle as RayBundle
from pytorch3d.renderer.camera_utils import join_cameras_as_batch
from pytorch3d.renderer.cameras import PerspectiveCameras
############################# RAY BUNDLE UTILITIES #############################
def is_scalar(x):
"""Returns True if the provided variable is a scalar
Args:
x: scalar or array-like (numpy array or torch tensor)
Returns:
bool: True if x is of the type scalar, or array-like with 0 dimension. False, otherwise
"""
if isinstance(x, float) or isinstance(x, int):
return True
if isinstance(x, np.ndarray) and np.ndim(x) == 0:
return True
if isinstance(x, torch.Tensor) and x.dim() == 0:
return True
return False
def transform_rays(reference_R, reference_T, rays):
"""
PyTorch3D Convention is used: X_cam = X_world @ R + T
Args:
reference_R: world2cam rotation matrix for reference camera (B, 3, 3)
reference_T: world2cam translation vector for reference camera (B, 3)
rays: (origin, direction) defined in world reference frame (B, V, N, 6)
Returns:
torch.Tensor: Transformed rays w.r.t. reference camera (B, V, N, 6)
"""
batch, num_views, num_rays, ray_dim = rays.shape
assert (
ray_dim == 6
), "First 3 dimensions should be origin; Last 3 dimensions should be direction"
rays = rays.reshape(batch, num_views * num_rays, ray_dim)
rays_out = rays.clone()
rays_out[..., :3] = torch.bmm(rays[..., :3], reference_R) + reference_T.unsqueeze(
-2
)
rays_out[..., 3:] = torch.bmm(rays[..., 3:], reference_R)
rays_out = rays_out.reshape(batch, num_views, num_rays, ray_dim)
return rays_out
def get_directional_raybundle(cameras, x_pos_ndc, y_pos_ndc, max_depth=1):
if is_scalar(x_pos_ndc):
x_pos_ndc = [x_pos_ndc]
if is_scalar(y_pos_ndc):
y_pos_ndc = [y_pos_ndc]
assert is_scalar(max_depth)
if not isinstance(x_pos_ndc, torch.Tensor):
x_pos_ndc = torch.tensor(x_pos_ndc) # (N, )
if not isinstance(y_pos_ndc, torch.Tensor):
y_pos_ndc = torch.tensor(y_pos_ndc) # (N, )
xy_depth = torch.stack(
(x_pos_ndc, y_pos_ndc, torch.ones_like(x_pos_ndc) * max_depth), dim=-1
) # (N, 3)
num_points = xy_depth.shape[0]
unprojected = cameras.unproject_points(
xy_depth.to(cameras.device), world_coordinates=True, from_ndc=True
) # (N, 3)
unprojected = unprojected.unsqueeze(0).to("cpu") # (B, N, 3)
origins = (
cameras.get_camera_center()[:, None, :].expand(-1, num_points, -1).to("cpu")
) # (B, N, 3)
directions = unprojected - origins # (B, N, 3)
directions = directions / directions.norm(dim=-1).unsqueeze(-1) # (B, N, 3)
lengths = (
torch.tensor([[0, 3]]).unsqueeze(0).expand(-1, num_points, -1).to("cpu")
) # (B, N, 2)
xys = xy_depth[:, :2].unsqueeze(0).to("cpu") # (B, N, 2)
raybundle = RayBundle(
origins=origins.to("cpu"),
directions=directions.to("cpu"),
lengths=lengths.to("cpu"),
xys=xys.to("cpu"),
)
return raybundle
def get_patch_raybundle(
cameras, num_patches_x, num_patches_y, max_depth=1, stratified=False
):
horizontal_patch_edges = torch.linspace(1, -1, num_patches_x + 1)
# horizontal_positions = horizontal_patch_edges[:-1] # (num_patches_x,): Top left corner of patch
vertical_patch_edges = torch.linspace(1, -1, num_patches_y + 1)
# vertical_positions = vertical_patch_edges[:-1] # (num_patches_y,): Top left corner of patch
if stratified:
horizontal_patch_edges_center = (
horizontal_patch_edges[..., 1:] + horizontal_patch_edges[..., :-1]
) / 2.0
horizontal_patch_edges_upper = torch.cat(
[horizontal_patch_edges_center, horizontal_patch_edges[..., -1:]], -1
)
horizontal_patch_edges_lower = torch.cat(
[horizontal_patch_edges[..., :1], horizontal_patch_edges_center], -1
)
horizontal_positions = (
horizontal_patch_edges_lower
+ (horizontal_patch_edges_upper - horizontal_patch_edges_lower)
* torch.rand_like(horizontal_patch_edges_lower)
)[..., :-1]
vertical_patch_edges_center = (
vertical_patch_edges[..., 1:] + vertical_patch_edges[..., :-1]
) / 2.0
vertical_patch_edges_upper = torch.cat(
[vertical_patch_edges_center, vertical_patch_edges[..., -1:]], -1
)
vertical_patch_edges_lower = torch.cat(
[vertical_patch_edges[..., :1], vertical_patch_edges_center], -1
)
vertical_positions = (
vertical_patch_edges_lower
+ (vertical_patch_edges_upper - vertical_patch_edges_lower)
* torch.rand_like(vertical_patch_edges_lower)
)[..., :-1]
else:
horizontal_positions = (
horizontal_patch_edges[:-1] + horizontal_patch_edges[1:]
) / 2 # (num_patches_x, ) # Center of patch
vertical_positions = (
vertical_patch_edges[:-1] + vertical_patch_edges[1:]
) / 2 # (num_patches_y, ) # Center of patch
h_pos, v_pos = torch.meshgrid(
horizontal_positions, vertical_positions, indexing='xy'
) # (num_patches_y, num_patches_x), (num_patches_y, num_patches_x)
h_pos = h_pos.reshape(-1) # (num_patches_y * num_patches_x)
v_pos = v_pos.reshape(-1) # (num_patches_y * num_patches_x)
raybundle = get_directional_raybundle(
cameras=cameras, x_pos_ndc=h_pos, y_pos_ndc=v_pos, max_depth=max_depth
)
return raybundle
def get_patch_rays(
cameras_list,
num_patches_x,
num_patches_y,
device,
return_xys=False,
stratified=False,
):
"""Returns patch rays given the camera viewpoints
Args:
cameras_list(list[pytorch3d.renderer.cameras.BaseCameras]): List of list of cameras (len (batch_size, num_input_views,))
num_patches_x: Number of patches in the x-direction (horizontal)
num_patches_y: Number of patches in the y-direction (vertical)
Returns:
torch.tensor: Patch rays of shape (batch_size, num_views, num_patches, 6)
"""
batch, numviews = len(cameras_list), len(cameras_list[0])
cameras_list = join_cameras_as_batch([cam for cam_batch in cameras_list for cam in cam_batch])
patch_rays = get_patch_raybundle(
cameras_list,
num_patches_y=num_patches_y,
num_patches_x=num_patches_x,
stratified=stratified,
)
if return_xys:
xys = patch_rays.xys
patch_rays = torch.cat((patch_rays.origins.unsqueeze(0), patch_rays.directions), dim=-1)
patch_rays = patch_rays.reshape(
batch, numviews, num_patches_x * num_patches_y, 6
).to(device)
if return_xys:
return patch_rays, xys
return patch_rays
############################ RAY PARAMETERIZATION ##############################
def get_plucker_parameterization(ray):
"""Returns the plucker representation of the rays given the (origin, direction) representation
Args:
ray(torch.Tensor): Tensor of shape (..., 6) with the (origin, direction) representation
Returns:
torch.Tensor: Tensor of shape (..., 6) with the plucker (D, OxD) representation
"""
ray = ray.clone() # Create a clone
ray_origins = ray[..., :3]
ray_directions = ray[..., 3:]
ray_directions = ray_directions / ray_directions.norm(dim=-1).unsqueeze(
-1
) # Normalize ray directions to unit vectors
plucker_normal = torch.cross(ray_origins, ray_directions, dim=-1)
plucker_parameterization = torch.cat([ray_directions, plucker_normal], dim=-1)
return plucker_parameterization
def positional_encoding(ray, n_freqs=10, start_freq=0):
"""
Positional Embeddings. For more details see Section 5.1 of
NeRFs: https://arxiv.org/pdf/2003.08934.pdf
Args:
ray: (B,P,d)
n_freqs: num of frequency bands
parameterize(str|None): Parameterization used for rays. Recommended: use 'plucker'. Default=None.
Returns:
pos_embeddings: Mapping input ray from R to R^{2*n_freqs}.
"""
start_freq = -1 * (n_freqs / 2)
freq_bands = 2.0 ** torch.arange(start_freq, start_freq + n_freqs) * np.pi
sin_encodings = [torch.sin(ray * freq) for freq in freq_bands]
cos_encodings = [torch.cos(ray * freq) for freq in freq_bands]
pos_embeddings = torch.cat(
sin_encodings + cos_encodings, dim=-1
) # B, P, d * 2n_freqs
return pos_embeddings
def convert_to_target_space(input_cameras, input_rays):
input_rays_transformed = []
# input_cameras: b, N
# input_rays: b, N, hw, 6
# return: b, N, hw, 6
for i in range(len(input_cameras[0])):
reference_cameras = [cameras[0] for cameras in input_cameras]
reference_R = [
camera.R.to(input_rays.device) for camera in reference_cameras
] # List (length=batch_size) of Rs(shape: 1, 3, 3)
reference_R = torch.cat(reference_R, dim=0) # (B, 3, 3)
reference_T = [
camera.T.to(input_rays.device) for camera in reference_cameras
] # List (length=batch_size) of Ts(shape: 1, 3)
reference_T = torch.cat(reference_T, dim=0) # (B, 3)
input_rays_transformed.append(
transform_rays(
reference_R=reference_R,
reference_T=reference_T,
rays=input_rays[:, i : i + 1],
)
)
return torch.cat(input_rays_transformed, 1)
def convert_to_view_space(input_cameras, input_rays):
input_rays_transformed = []
# input_cameras: b, N
# input_rays: b, hw, 6
# return: b, n, hw, 6
for i in range(len(input_cameras[0])):
reference_cameras = [cameras[i] for cameras in input_cameras]
reference_R = [
camera.R.to(input_rays.device) for camera in reference_cameras
] # List (length=batch_size) of Rs(shape: 1, 3, 3)
reference_R = torch.cat(reference_R, dim=0) # (B, 3, 3)
reference_T = [
camera.T.to(input_rays.device) for camera in reference_cameras
] # List (length=batch_size) of Ts(shape: 1, 3)
reference_T = torch.cat(reference_T, dim=0) # (B, 3)
input_rays_transformed.append(
transform_rays(
reference_R=reference_R,
reference_T=reference_T,
rays=input_rays.unsqueeze(1),
)
)
return torch.cat(input_rays_transformed, 1)
def convert_to_view_space_points(input_cameras, input_points):
input_rays_transformed = []
# input_cameras: b, N
# ipput_points: b, hw, d, 3
# returns: b, N, hw, d, 3 [target points transformed in the reference view frame]
for i in range(len(input_cameras[0])):
reference_cameras = [cameras[i] for cameras in input_cameras]
reference_R = [
camera.R.to(input_points.device) for camera in reference_cameras
] # List (length=batch_size) of Rs(shape: 1, 3, 3)
reference_R = torch.cat(reference_R, dim=0) # (B, 3, 3)
reference_T = [
camera.T.to(input_points.device) for camera in reference_cameras
] # List (length=batch_size) of Ts(shape: 1, 3)
reference_T = torch.cat(reference_T, dim=0) # (B, 3)
input_points_clone = torch.einsum(
"bsdj,bjk->bsdk", input_points, reference_R
) + reference_T.reshape(-1, 1, 1, 3)
input_rays_transformed.append(input_points_clone.unsqueeze(1))
return torch.cat(input_rays_transformed, dim=1)
def interpolate_translate_interpolate_xaxis(cam1, interp_start, interp_end, interp_step):
cameras = []
for i in np.arange(interp_start, interp_end, interp_step):
viewtoworld = cam1.get_world_to_view_transform().inverse()
x_axis = torch.from_numpy(np.array([i, 0., 0.0])).reshape(1,3).float().to(cam1.device)
newc = viewtoworld.transform_points(x_axis)
rt = cam1.R[0]
# t = cam1.T
new_t = -rt.T@newc.T
cameras.append(PerspectiveCameras(R=cam1.R,
T=new_t.T,
focal_length=cam1.focal_length,
principal_point=cam1.principal_point,
image_size=512,
)
)
return cameras
def interpolate_translate_interpolate_yaxis(cam1, interp_start, interp_end, interp_step):
cameras = []
for i in np.arange(interp_start, interp_end, interp_step):
# i = np.clip(i, -0.2, 0.18)
viewtoworld = cam1.get_world_to_view_transform().inverse()
x_axis = torch.from_numpy(np.array([0, i, 0.0])).reshape(1,3).float().to(cam1.device)
newc = viewtoworld.transform_points(x_axis)
rt = cam1.R[0]
# t = cam1.T
new_t = -rt.T@newc.T
cameras.append(PerspectiveCameras(R=cam1.R,
T=new_t.T,
focal_length=cam1.focal_length,
principal_point=cam1.principal_point,
image_size=512,
)
)
return cameras
def interpolate_translate_interpolate_zaxis(cam1, interp_start, interp_end, interp_step):
cameras = []
for i in np.arange(interp_start, interp_end, interp_step):
viewtoworld = cam1.get_world_to_view_transform().inverse()
x_axis = torch.from_numpy(np.array([0, 0., i])).reshape(1,3).float().to(cam1.device)
newc = viewtoworld.transform_points(x_axis)
rt = cam1.R[0]
# t = cam1.T
new_t = -rt.T@newc.T
cameras.append(PerspectiveCameras(R=cam1.R,
T=new_t.T,
focal_length=cam1.focal_length,
principal_point=cam1.principal_point,
image_size=512,
)
)
return cameras
def interpolatefocal(cam1, interp_start, interp_end, interp_step):
cameras = []
for i in np.arange(interp_start, interp_end, interp_step):
cameras.append(PerspectiveCameras(R=cam1.R,
T=cam1.T,
focal_length=cam1.focal_length*i,
principal_point=cam1.principal_point,
image_size=512,
)
)
return cameras
|