File size: 16,195 Bytes
ad7bc89
 
 
 
 
 
 
 
 
 
00687dd
ad7bc89
 
 
 
8d3da67
ad7bc89
 
 
 
 
 
 
 
 
 
 
 
 
 
8eb5f81
ad7bc89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8eb5f81
 
 
 
 
ad7bc89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
226ece7
 
 
ad7bc89
 
 
 
 
 
 
 
 
 
 
 
 
226ece7
ad7bc89
 
 
 
8eb5f81
 
 
 
 
 
 
 
 
ad7bc89
 
 
 
 
 
 
 
 
8d3da67
ad7bc89
 
8eb5f81
 
 
 
 
 
 
 
 
ad7bc89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8eb5f81
ad7bc89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8eb5f81
ad7bc89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ce0ef5
ad7bc89
 
1ce0ef5
 
 
 
a24f25c
 
 
1ce0ef5
 
 
ad7bc89
8eb5f81
 
 
 
 
 
 
 
 
ad7bc89
 
 
 
 
8eb5f81
ad7bc89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8eb5f81
ad7bc89
 
 
 
 
 
 
 
 
 
 
 
 
8eb5f81
 
 
 
 
 
 
 
 
 
ad7bc89
8eb5f81
ad7bc89
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import os
import gradio as gr
import plotly.graph_objects as go
import torch
import json
import glob
import numpy as np
from PIL import Image
import time
import copy
import sys

# Mesh imports
from pytorch3d.io import load_objs_as_meshes
from pytorch3d.vis.plotly_vis import AxisArgs, plot_scene
from pytorch3d.transforms import RotateAxisAngle, Translate

from sampling_for_demo import load_and_return_model_and_data, sample, load_base_model

device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")


def transform_mesh(mesh, transform, scale=1.0):
    mesh = mesh.clone()
    verts = mesh.verts_packed() * scale
    verts = transform.transform_points(verts)
    mesh.offset_verts_(verts - mesh.verts_packed())
    return mesh
    

def get_input_pose_fig(category=None):
    global curr_camera_dict
    global obj_filename
    global plane_trans

    plane_filename = 'assets/plane.obj'

    mesh_scale = 0.75
    mesh = load_objs_as_meshes([obj_filename], device=device)   
    mesh.scale_verts_(mesh_scale)

    plane = load_objs_as_meshes([plane_filename], device=device)

    ### plane    
    rotate_x = RotateAxisAngle(angle=90.0, axis='X', device=device)
    plane = transform_mesh(plane, rotate_x)
    
    if category == "teddybear":
        rotate_teddy = RotateAxisAngle(angle=15.0, axis='X', device=device)
        plane = transform_mesh(plane, rotate_teddy)

    translate_y = Translate(0, plane_trans * mesh_scale, 0, device=device)
    plane = transform_mesh(plane, translate_y)

    fig = plot_scene({
        "plot": {
            "object": mesh,
        },
    },
    axis_args=AxisArgs(showgrid=True, backgroundcolor='#cccde0'),
    xaxis=dict(range=[-1, 1]),
    yaxis=dict(range=[-1, 1]),
    zaxis=dict(range=[-1, 1])
    )

    plane = plane.detach().cpu()
    verts = plane.verts_packed()
    faces = plane.faces_packed()

    fig.add_trace(
        go.Mesh3d(
            x=verts[:, 0],
            y=verts[:, 1],
            z=verts[:, 2],
            i=faces[:, 0],
            j=faces[:, 1],
            k=faces[:, 2],
            opacity=0.7,
            color='gray',
            hoverinfo='skip',
        ),
    )


    print("fig: curr camera dict")
    print(curr_camera_dict)
    camera_dict = curr_camera_dict
        
    fig.update_layout(scene=dict(
        xaxis=dict(showticklabels=True, visible=True),
        yaxis=dict(showticklabels=True, visible=True),
        zaxis=dict(showticklabels=True, visible=True),
    ))
    # show grid
    fig.update_layout(scene=dict(
        xaxis=dict(showgrid=True, gridwidth=1, gridcolor='black'),
        yaxis=dict(showgrid=True, gridwidth=1, gridcolor='black'),
        zaxis=dict(showgrid=True, gridwidth=1, gridcolor='black'),
        bgcolor='#dedede',
    ))

    fig.update_layout(
        camera_dict, 
        width=512, height=512,
        )

    return fig


def run_inference(cam_pose_json, prompt, scale_im, scale, steps, seed):
    print("prompt is ", prompt)
    global current_data, current_model

    # run model
    images = sample(
        current_model, current_data,
        num_images=1,
        prompt=prompt,
        appendpath="",
        camera_json=cam_pose_json,
        train=False,
        scale=scale,
        scale_im=scale_im,
        beta=1.0,
        num_ref=8,
        skipreflater=False,
        num_steps=steps,
        valid=False,
        max_images=20,
        seed=seed
    )

    result = images[0]
    print(result.shape)
    result = Image.fromarray((np.clip(((result+1.0)/2.0).permute(1, 2, 0).cpu().numpy(), 0., 1.)*255).astype(np.uint8))
    print('result obtained')
    return result



def update_curr_camera_dict(camera_json):
    # TODO: this does not always update the figure, also there's always flashes
    global curr_camera_dict
    global prev_camera_dict
    if camera_json is None:
        camera_json = json.dumps(prev_camera_dict)
    camera_json = camera_json.replace("'", "\"")
    curr_camera_dict = json.loads(camera_json) # ["scene.camera"]
    print("update curr camera dict")
    print(curr_camera_dict)
    return camera_json


MODELS_DIR = "pretrained-models/"

def select_and_load_model(category, category_single_id):
    global current_data, current_model, base_model
    del current_model
    del current_data    
    torch.cuda.empty_cache()
    current_model = copy.deepcopy(base_model)

    ### choose model checkpoint and config
    delta_ckpt = glob.glob(f"{MODELS_DIR}/*{category}{category_single_id}*/checkpoints/step=*.ckpt")[0]
    print(f"Loading model from {delta_ckpt}")

    logdir = delta_ckpt.split('/checkpoints')[0]
    config = sorted(glob.glob(os.path.join(logdir, "configs/*.yaml")))[-1]

    start_time = time.time()
    current_model, current_data = load_and_return_model_and_data(config, current_model,
                                                                    delta_ckpt=delta_ckpt
                                                                    )
    
    print(f"Time taken to load delta model: {time.time() - start_time:.2f}s")
    
    print("!!! model loaded")

    if category == "car":
        input_prompt = "A <new1> car parked by a snowy mountain range"
    elif category == "chair":
        input_prompt = "A <new1> chair in a garden surrounded by flowers"
    elif category == "motorcycle":
        input_prompt = "A <new1> motorcycle beside a calm lake"
    elif category == "teddybear":
        input_prompt = "A <new1> teddy bear on the sand at the beach"
    
    return "### Model loaded!", input_prompt


global current_data
global current_model
current_data = None
current_model = None

global base_model
BASE_CONFIG = "custom-diffusion360/configs/train_co3d_concept.yaml"
BASE_CKPT = "pretrained-models/sd_xl_base_1.0.safetensors"

base_model = None

ORIGINAL_SPACE_ID = "customdiffusion360/customdiffusion360"
SPACE_ID = os.getenv("SPACE_ID")

if SPACE_ID != ORIGINAL_SPACE_ID:
    start_time = time.time()
    base_model = load_base_model(BASE_CONFIG, ckpt=BASE_CKPT, verbose=False)
    print(f"Time taken to load base model: {time.time() - start_time:.2f}s")

global curr_camera_dict 
curr_camera_dict = {
        "scene.camera": {
            "up": {"x": -0.13227683305740356,
                    "y": -0.9911391735076904,
                    "z": -0.013464212417602539},
            "center": {"x": -0.005292057991027832,
                        "y": 0.020704858005046844,
                        "z": 0.0873757004737854},
            "eye": {"x": 0.8585731983184814,
                    "y": -0.08790968358516693,
                    "z": -0.40458938479423523},
        },
        "scene.aspectratio": {"x": 1.974, "y": 1.974, "z": 1.974},
        "scene.aspectmode": "manual"
    }

global prev_camera_dict
prev_camera_dict = copy.deepcopy(curr_camera_dict)

global obj_filename
obj_filename = "assets/car0_mesh_centered_flipped.obj"
global plane_trans
plane_trans = 0.16

my_fig = get_input_pose_fig()

scripts = open("scripts.js", "r").read()


def update_category_single_id(category):
    global curr_camera_dict
    global prev_camera_dict
    global obj_filename
    global plane_trans
    choices = None
    
    if category == "car":
        choices = ["0"]
        curr_camera_dict = {
            "scene.camera": {
                "up": {"x": -0.13227683305740356,
                        "y": -0.9911391735076904,
                        "z": -0.013464212417602539},
                "center": {"x": -0.005292057991027832,
                            "y": 0.020704858005046844,
                            "z": 0.0873757004737854},
                "eye": {"x": 0.8585731983184814,
                        "y": -0.08790968358516693,
                        "z": -0.40458938479423523},
            },
            "scene.aspectratio": {"x": 1.974, "y": 1.974, "z": 1.974},
            "scene.aspectmode": "manual"
        }
        plane_trans = 0.16

    elif category == "chair":
        choices = ["191"]
        curr_camera_dict = {
            "scene.camera": {
                "up": {"x": 1.0477e-04,
                        "y": -9.9995e-01,
                        "z": 1.0288e-02},
                "center": {"x": 0.0539,
                            "y":  0.0015,
                            "z":  0.0007},
                "eye": {"x": 0.0410,
                        "y": -0.0091,
                        "z": -0.9991},
            },
            "scene.aspectratio": {"x": 0.9084, "y": 0.9084, "z": 0.9084},
            "scene.aspectmode": "manual"
        }
        plane_trans = 0.38
        
    elif category == "motorcycle":
        choices = ["12"]
        curr_camera_dict = {
            "scene.camera": {
                "up": {"x":  0.0308,
                        "y":  -0.9994,
                        "z":  -0.0147},
                "center": {"x":   0.0240,
                            "y": -0.0310,
                            "z":   -0.0016},
                "eye": {"x": -0.0580,
                        "y": -0.0188,
                        "z": -0.9981},
            },
            "scene.aspectratio": {"x": 1.5786, "y": 1.5786, "z": 1.5786},
            "scene.aspectmode": "manual"
        }
        plane_trans = 0.2

    elif category == "teddybear":
        choices = ["31"]
        curr_camera_dict = {
            "scene.camera": {
                "up": {"x": 0.4304,
                        "y": -0.9023,
                        "z": -0.0221},
                "center": {"x": -0.0658,
                            "y": 0.2081,
                            "z": 0.0175},
                "eye": {"x": -0.4456,
                        "y":   0.0493,
                        "z": -0.8939},
            },
            "scene.aspectratio": {"x": 1.8052, "y": 1.8052, "z": 1.8052},
            "scene.aspectmode": "manual",
        }
        plane_trans = 0.3

    obj_filename = f"assets/{category}{choices[0]}_mesh_centered_flipped.obj"
    prev_camera_dict = copy.deepcopy(curr_camera_dict)
    return gr.Dropdown(choices=choices, label="Object ID", value=choices[0])


head = """
    <script src="https://cdn.plot.ly/plotly-2.30.0.min.js" charset="utf-8"></script>
    """

with gr.Blocks(head=head, 
               css="style.css", 
               js=scripts,
               title="Customizing Text-to-Image Diffusion with Camera Viewpoint Control") as demo:
    
    gr.HTML("""
        <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
            <div>
                <h2><a href='https://customdiffusion360.github.io/index.html'>Customizing Text-to-Image Diffusion with Camera Viewpoint Control</a></h2>
            </div>
        </div>
        <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
            <a href='https://customdiffusion360.github.io/index.html' style="padding: 10px;">
               <img src='https://img.shields.io/badge/Project%20Page-8A2BE2'>
            </a>
            <a href='https://arxiv.org/abs/2404.12333'>
                <img src="https://img.shields.io/badge/arXiv-2404.12333-red">
            </a>
            <a class="link" href='https://github.com/customdiffusion360/custom-diffusion360' style="padding: 10px;">
                <img src='https://img.shields.io/badge/Github-%23121011.svg'>
            </a>
        </div>
        <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
            <p> 
                This is a demo for <a href='https://github.com/customdiffusion360/custom-diffusion360'>Custom Diffusion 360</a>.
                Please duplicate this space and upgrade the GPU to A10G Large in Settings to run the demo.
            </p>
        </div>
        <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
            <a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/customdiffusion360/customdiffusion360?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a>
        </div>
        <hr></hr>
    """,
    visible=True
    )


    with gr.Row():
        with gr.Column(min_width=150):
            gr.Markdown("## 1. SELECT CUSTOMIZED MODEL")

            category = gr.Dropdown(choices=["car", "chair", "motorcycle", "teddybear"], label="Category", value="car")

            category_single_id = gr.Dropdown(label="Object ID", choices=["0"], type="value", value="0", visible=False)
        
            category.change(update_category_single_id, [category], [category_single_id])
            
            load_model_btn = gr.Button(value="Load Model", elem_id="load_model_button")

            load_model_status = gr.Markdown(elem_id="load_model_status", value="### Please select and load a model.")

        with gr.Column(min_width=512):
            gr.Markdown("## 2. CAMERA POSE VISUALIZATION")
            
            # TODO ? don't use gradio plotly element so we can remove menu buttons
            map = gr.Plot(value=my_fig, min_width=512, elem_id="map")

            ### hidden elements
            update_pose_btn = gr.Button(value="Update Camera Pose", visible=False, elem_id="update_pose_button")
            input_pose = gr.TextArea(value=curr_camera_dict, label="Input Camera Pose", visible=False, elem_id="input_pose", interactive=False)
            check_pose_btn = gr.Button(value="Check Camera Pose", visible=False, elem_id="check_pose_button")

            ## TODO: track init_camera_dict and with js?
            
            ### visible elements
            input_prompt = gr.Textbox(value="A <new1> car parked by a snowy mountain range", label="Prompt", interactive=True)
            scale_im = gr.Slider(value=3.5, label="Image guidance scale", minimum=0, maximum=20.0, step=0.1)
            scale = gr.Slider(value=7.5, label="Text guidance scale", minimum=0, maximum=20.0, step=0.1)
            steps = gr.Slider(value=10, label="Inference steps", minimum=1, maximum=50, step=1)
            seed = gr.Textbox(value=42, label="Seed")
        
        with gr.Column(min_width=50, elem_id="column_process", scale=0.3):
            run_btn = gr.Button(value="Run", elem_id="run_button", min_width=50)


        with gr.Column(min_width=512):
            gr.Markdown("## 3. OUR OUTPUT")
            result = gr.Image(show_label=False, show_download_button=True, width=512, height=512, elem_id="result")

            gr.Markdown("### Camera Pose Controls:")
            gr.Markdown("* Orbital rotation: Left-click and drag.")
            gr.Markdown("* Zoom: Mouse wheel scroll.")
            gr.Markdown("* Pan (translate the camera): Right-click and drag.")
            gr.Markdown("* Tilt camera: Tilt mouse wheel left/right.")
            gr.Markdown("* Reset to initial camera pose: Hover over the top right corner of the plot and click the camera icon.")
            gr.Markdown("### Note:")
            gr.Markdown("The models only work within a range of elevation angles and distances near the initial camera pose.")
            

    load_model_btn.click(select_and_load_model, [category, category_single_id], [load_model_status, input_prompt])
    load_model_btn.click(get_input_pose_fig, [category], [map])

    update_pose_btn.click(update_curr_camera_dict, [input_pose], [input_pose],) # js=send_js_camera_to_gradio)
    # check_pose_btn.click(check_curr_camera_dict, [], [input_pose])
    run_btn.click(run_inference, [input_pose, input_prompt, scale_im, scale, steps, seed], result)

    demo.load(js=scripts)


if __name__ == "__main__":
    demo.queue().launch(debug=True)