Spaces:
Runtime error
Runtime error
File size: 16,195 Bytes
ad7bc89 00687dd ad7bc89 8d3da67 ad7bc89 8eb5f81 ad7bc89 8eb5f81 ad7bc89 226ece7 ad7bc89 226ece7 ad7bc89 8eb5f81 ad7bc89 8d3da67 ad7bc89 8eb5f81 ad7bc89 8eb5f81 ad7bc89 8eb5f81 ad7bc89 1ce0ef5 ad7bc89 1ce0ef5 a24f25c 1ce0ef5 ad7bc89 8eb5f81 ad7bc89 8eb5f81 ad7bc89 8eb5f81 ad7bc89 8eb5f81 ad7bc89 8eb5f81 ad7bc89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
import os
import gradio as gr
import plotly.graph_objects as go
import torch
import json
import glob
import numpy as np
from PIL import Image
import time
import copy
import sys
# Mesh imports
from pytorch3d.io import load_objs_as_meshes
from pytorch3d.vis.plotly_vis import AxisArgs, plot_scene
from pytorch3d.transforms import RotateAxisAngle, Translate
from sampling_for_demo import load_and_return_model_and_data, sample, load_base_model
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
def transform_mesh(mesh, transform, scale=1.0):
mesh = mesh.clone()
verts = mesh.verts_packed() * scale
verts = transform.transform_points(verts)
mesh.offset_verts_(verts - mesh.verts_packed())
return mesh
def get_input_pose_fig(category=None):
global curr_camera_dict
global obj_filename
global plane_trans
plane_filename = 'assets/plane.obj'
mesh_scale = 0.75
mesh = load_objs_as_meshes([obj_filename], device=device)
mesh.scale_verts_(mesh_scale)
plane = load_objs_as_meshes([plane_filename], device=device)
### plane
rotate_x = RotateAxisAngle(angle=90.0, axis='X', device=device)
plane = transform_mesh(plane, rotate_x)
if category == "teddybear":
rotate_teddy = RotateAxisAngle(angle=15.0, axis='X', device=device)
plane = transform_mesh(plane, rotate_teddy)
translate_y = Translate(0, plane_trans * mesh_scale, 0, device=device)
plane = transform_mesh(plane, translate_y)
fig = plot_scene({
"plot": {
"object": mesh,
},
},
axis_args=AxisArgs(showgrid=True, backgroundcolor='#cccde0'),
xaxis=dict(range=[-1, 1]),
yaxis=dict(range=[-1, 1]),
zaxis=dict(range=[-1, 1])
)
plane = plane.detach().cpu()
verts = plane.verts_packed()
faces = plane.faces_packed()
fig.add_trace(
go.Mesh3d(
x=verts[:, 0],
y=verts[:, 1],
z=verts[:, 2],
i=faces[:, 0],
j=faces[:, 1],
k=faces[:, 2],
opacity=0.7,
color='gray',
hoverinfo='skip',
),
)
print("fig: curr camera dict")
print(curr_camera_dict)
camera_dict = curr_camera_dict
fig.update_layout(scene=dict(
xaxis=dict(showticklabels=True, visible=True),
yaxis=dict(showticklabels=True, visible=True),
zaxis=dict(showticklabels=True, visible=True),
))
# show grid
fig.update_layout(scene=dict(
xaxis=dict(showgrid=True, gridwidth=1, gridcolor='black'),
yaxis=dict(showgrid=True, gridwidth=1, gridcolor='black'),
zaxis=dict(showgrid=True, gridwidth=1, gridcolor='black'),
bgcolor='#dedede',
))
fig.update_layout(
camera_dict,
width=512, height=512,
)
return fig
def run_inference(cam_pose_json, prompt, scale_im, scale, steps, seed):
print("prompt is ", prompt)
global current_data, current_model
# run model
images = sample(
current_model, current_data,
num_images=1,
prompt=prompt,
appendpath="",
camera_json=cam_pose_json,
train=False,
scale=scale,
scale_im=scale_im,
beta=1.0,
num_ref=8,
skipreflater=False,
num_steps=steps,
valid=False,
max_images=20,
seed=seed
)
result = images[0]
print(result.shape)
result = Image.fromarray((np.clip(((result+1.0)/2.0).permute(1, 2, 0).cpu().numpy(), 0., 1.)*255).astype(np.uint8))
print('result obtained')
return result
def update_curr_camera_dict(camera_json):
# TODO: this does not always update the figure, also there's always flashes
global curr_camera_dict
global prev_camera_dict
if camera_json is None:
camera_json = json.dumps(prev_camera_dict)
camera_json = camera_json.replace("'", "\"")
curr_camera_dict = json.loads(camera_json) # ["scene.camera"]
print("update curr camera dict")
print(curr_camera_dict)
return camera_json
MODELS_DIR = "pretrained-models/"
def select_and_load_model(category, category_single_id):
global current_data, current_model, base_model
del current_model
del current_data
torch.cuda.empty_cache()
current_model = copy.deepcopy(base_model)
### choose model checkpoint and config
delta_ckpt = glob.glob(f"{MODELS_DIR}/*{category}{category_single_id}*/checkpoints/step=*.ckpt")[0]
print(f"Loading model from {delta_ckpt}")
logdir = delta_ckpt.split('/checkpoints')[0]
config = sorted(glob.glob(os.path.join(logdir, "configs/*.yaml")))[-1]
start_time = time.time()
current_model, current_data = load_and_return_model_and_data(config, current_model,
delta_ckpt=delta_ckpt
)
print(f"Time taken to load delta model: {time.time() - start_time:.2f}s")
print("!!! model loaded")
if category == "car":
input_prompt = "A <new1> car parked by a snowy mountain range"
elif category == "chair":
input_prompt = "A <new1> chair in a garden surrounded by flowers"
elif category == "motorcycle":
input_prompt = "A <new1> motorcycle beside a calm lake"
elif category == "teddybear":
input_prompt = "A <new1> teddy bear on the sand at the beach"
return "### Model loaded!", input_prompt
global current_data
global current_model
current_data = None
current_model = None
global base_model
BASE_CONFIG = "custom-diffusion360/configs/train_co3d_concept.yaml"
BASE_CKPT = "pretrained-models/sd_xl_base_1.0.safetensors"
base_model = None
ORIGINAL_SPACE_ID = "customdiffusion360/customdiffusion360"
SPACE_ID = os.getenv("SPACE_ID")
if SPACE_ID != ORIGINAL_SPACE_ID:
start_time = time.time()
base_model = load_base_model(BASE_CONFIG, ckpt=BASE_CKPT, verbose=False)
print(f"Time taken to load base model: {time.time() - start_time:.2f}s")
global curr_camera_dict
curr_camera_dict = {
"scene.camera": {
"up": {"x": -0.13227683305740356,
"y": -0.9911391735076904,
"z": -0.013464212417602539},
"center": {"x": -0.005292057991027832,
"y": 0.020704858005046844,
"z": 0.0873757004737854},
"eye": {"x": 0.8585731983184814,
"y": -0.08790968358516693,
"z": -0.40458938479423523},
},
"scene.aspectratio": {"x": 1.974, "y": 1.974, "z": 1.974},
"scene.aspectmode": "manual"
}
global prev_camera_dict
prev_camera_dict = copy.deepcopy(curr_camera_dict)
global obj_filename
obj_filename = "assets/car0_mesh_centered_flipped.obj"
global plane_trans
plane_trans = 0.16
my_fig = get_input_pose_fig()
scripts = open("scripts.js", "r").read()
def update_category_single_id(category):
global curr_camera_dict
global prev_camera_dict
global obj_filename
global plane_trans
choices = None
if category == "car":
choices = ["0"]
curr_camera_dict = {
"scene.camera": {
"up": {"x": -0.13227683305740356,
"y": -0.9911391735076904,
"z": -0.013464212417602539},
"center": {"x": -0.005292057991027832,
"y": 0.020704858005046844,
"z": 0.0873757004737854},
"eye": {"x": 0.8585731983184814,
"y": -0.08790968358516693,
"z": -0.40458938479423523},
},
"scene.aspectratio": {"x": 1.974, "y": 1.974, "z": 1.974},
"scene.aspectmode": "manual"
}
plane_trans = 0.16
elif category == "chair":
choices = ["191"]
curr_camera_dict = {
"scene.camera": {
"up": {"x": 1.0477e-04,
"y": -9.9995e-01,
"z": 1.0288e-02},
"center": {"x": 0.0539,
"y": 0.0015,
"z": 0.0007},
"eye": {"x": 0.0410,
"y": -0.0091,
"z": -0.9991},
},
"scene.aspectratio": {"x": 0.9084, "y": 0.9084, "z": 0.9084},
"scene.aspectmode": "manual"
}
plane_trans = 0.38
elif category == "motorcycle":
choices = ["12"]
curr_camera_dict = {
"scene.camera": {
"up": {"x": 0.0308,
"y": -0.9994,
"z": -0.0147},
"center": {"x": 0.0240,
"y": -0.0310,
"z": -0.0016},
"eye": {"x": -0.0580,
"y": -0.0188,
"z": -0.9981},
},
"scene.aspectratio": {"x": 1.5786, "y": 1.5786, "z": 1.5786},
"scene.aspectmode": "manual"
}
plane_trans = 0.2
elif category == "teddybear":
choices = ["31"]
curr_camera_dict = {
"scene.camera": {
"up": {"x": 0.4304,
"y": -0.9023,
"z": -0.0221},
"center": {"x": -0.0658,
"y": 0.2081,
"z": 0.0175},
"eye": {"x": -0.4456,
"y": 0.0493,
"z": -0.8939},
},
"scene.aspectratio": {"x": 1.8052, "y": 1.8052, "z": 1.8052},
"scene.aspectmode": "manual",
}
plane_trans = 0.3
obj_filename = f"assets/{category}{choices[0]}_mesh_centered_flipped.obj"
prev_camera_dict = copy.deepcopy(curr_camera_dict)
return gr.Dropdown(choices=choices, label="Object ID", value=choices[0])
head = """
<script src="https://cdn.plot.ly/plotly-2.30.0.min.js" charset="utf-8"></script>
"""
with gr.Blocks(head=head,
css="style.css",
js=scripts,
title="Customizing Text-to-Image Diffusion with Camera Viewpoint Control") as demo:
gr.HTML("""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<div>
<h2><a href='https://customdiffusion360.github.io/index.html'>Customizing Text-to-Image Diffusion with Camera Viewpoint Control</a></h2>
</div>
</div>
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<a href='https://customdiffusion360.github.io/index.html' style="padding: 10px;">
<img src='https://img.shields.io/badge/Project%20Page-8A2BE2'>
</a>
<a href='https://arxiv.org/abs/2404.12333'>
<img src="https://img.shields.io/badge/arXiv-2404.12333-red">
</a>
<a class="link" href='https://github.com/customdiffusion360/custom-diffusion360' style="padding: 10px;">
<img src='https://img.shields.io/badge/Github-%23121011.svg'>
</a>
</div>
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<p>
This is a demo for <a href='https://github.com/customdiffusion360/custom-diffusion360'>Custom Diffusion 360</a>.
Please duplicate this space and upgrade the GPU to A10G Large in Settings to run the demo.
</p>
</div>
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/customdiffusion360/customdiffusion360?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a>
</div>
<hr></hr>
""",
visible=True
)
with gr.Row():
with gr.Column(min_width=150):
gr.Markdown("## 1. SELECT CUSTOMIZED MODEL")
category = gr.Dropdown(choices=["car", "chair", "motorcycle", "teddybear"], label="Category", value="car")
category_single_id = gr.Dropdown(label="Object ID", choices=["0"], type="value", value="0", visible=False)
category.change(update_category_single_id, [category], [category_single_id])
load_model_btn = gr.Button(value="Load Model", elem_id="load_model_button")
load_model_status = gr.Markdown(elem_id="load_model_status", value="### Please select and load a model.")
with gr.Column(min_width=512):
gr.Markdown("## 2. CAMERA POSE VISUALIZATION")
# TODO ? don't use gradio plotly element so we can remove menu buttons
map = gr.Plot(value=my_fig, min_width=512, elem_id="map")
### hidden elements
update_pose_btn = gr.Button(value="Update Camera Pose", visible=False, elem_id="update_pose_button")
input_pose = gr.TextArea(value=curr_camera_dict, label="Input Camera Pose", visible=False, elem_id="input_pose", interactive=False)
check_pose_btn = gr.Button(value="Check Camera Pose", visible=False, elem_id="check_pose_button")
## TODO: track init_camera_dict and with js?
### visible elements
input_prompt = gr.Textbox(value="A <new1> car parked by a snowy mountain range", label="Prompt", interactive=True)
scale_im = gr.Slider(value=3.5, label="Image guidance scale", minimum=0, maximum=20.0, step=0.1)
scale = gr.Slider(value=7.5, label="Text guidance scale", minimum=0, maximum=20.0, step=0.1)
steps = gr.Slider(value=10, label="Inference steps", minimum=1, maximum=50, step=1)
seed = gr.Textbox(value=42, label="Seed")
with gr.Column(min_width=50, elem_id="column_process", scale=0.3):
run_btn = gr.Button(value="Run", elem_id="run_button", min_width=50)
with gr.Column(min_width=512):
gr.Markdown("## 3. OUR OUTPUT")
result = gr.Image(show_label=False, show_download_button=True, width=512, height=512, elem_id="result")
gr.Markdown("### Camera Pose Controls:")
gr.Markdown("* Orbital rotation: Left-click and drag.")
gr.Markdown("* Zoom: Mouse wheel scroll.")
gr.Markdown("* Pan (translate the camera): Right-click and drag.")
gr.Markdown("* Tilt camera: Tilt mouse wheel left/right.")
gr.Markdown("* Reset to initial camera pose: Hover over the top right corner of the plot and click the camera icon.")
gr.Markdown("### Note:")
gr.Markdown("The models only work within a range of elevation angles and distances near the initial camera pose.")
load_model_btn.click(select_and_load_model, [category, category_single_id], [load_model_status, input_prompt])
load_model_btn.click(get_input_pose_fig, [category], [map])
update_pose_btn.click(update_curr_camera_dict, [input_pose], [input_pose],) # js=send_js_camera_to_gradio)
# check_pose_btn.click(check_curr_camera_dict, [], [input_pose])
run_btn.click(run_inference, [input_pose, input_prompt, scale_im, scale, steps, seed], result)
demo.load(js=scripts)
if __name__ == "__main__":
demo.queue().launch(debug=True)
|