Spaces:
Runtime error
Runtime error
model: | |
base_learning_rate: 1.0e-4 | |
target: sgm.models.diffusion.DiffusionEngine | |
params: | |
scale_factor: 0.13025 | |
disable_first_stage_autocast: True | |
trainkeys: pose | |
multiplier: 0.05 | |
loss_rgb_lambda: 5 | |
loss_fg_lambda: 10 | |
loss_bg_lambda: 10 | |
log_keys: | |
- txt | |
denoiser_config: | |
target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser | |
params: | |
num_idx: 1000 | |
weighting_config: | |
target: sgm.modules.diffusionmodules.denoiser_weighting.EpsWeighting | |
scaling_config: | |
target: sgm.modules.diffusionmodules.denoiser_scaling.EpsScaling | |
discretization_config: | |
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization | |
network_config: | |
target: sgm.modules.diffusionmodules.openaimodel.UNetModel | |
params: | |
adm_in_channels: 2816 | |
num_classes: sequential | |
use_checkpoint: False | |
in_channels: 4 | |
out_channels: 4 | |
model_channels: 320 | |
attention_resolutions: [4, 2] | |
num_res_blocks: 2 | |
channel_mult: [1, 2, 4] | |
num_head_channels: 64 | |
use_linear_in_transformer: True | |
transformer_depth: [1, 2, 10] | |
context_dim: 2048 | |
spatial_transformer_attn_type: softmax-xformers | |
image_cross_blocks: [0, 2, 4, 6, 8, 10] | |
rgb: True | |
far: 2 | |
num_samples: 24 | |
not_add_context_in_triplane: False | |
rgb_predict: True | |
add_lora: False | |
average: False | |
use_prev_weights_imp_sample: True | |
stratified: True | |
imp_sampling_percent: 0.9 | |
conditioner_config: | |
target: sgm.modules.GeneralConditioner | |
params: | |
emb_models: | |
# crossattn cond | |
- is_trainable: False | |
input_keys: txt,txt_ref | |
target: sgm.modules.encoders.modules.FrozenCLIPEmbedder | |
params: | |
layer: hidden | |
layer_idx: 11 | |
modifier_token: <new1> | |
# crossattn and vector cond | |
- is_trainable: False | |
input_keys: txt,txt_ref | |
target: sgm.modules.encoders.modules.FrozenOpenCLIPEmbedder | |
params: | |
arch: ViT-bigG-14 | |
version: laion2b_s39b_b160k | |
layer: penultimate | |
always_return_pooled: True | |
legacy: False | |
modifier_token: <new1> | |
# vector cond | |
- is_trainable: False | |
input_keys: original_size_as_tuple,original_size_as_tuple_ref | |
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND | |
params: | |
outdim: 256 # multiplied by two | |
# vector cond | |
- is_trainable: False | |
input_keys: crop_coords_top_left,crop_coords_top_left_ref | |
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND | |
params: | |
outdim: 256 # multiplied by two | |
# vector cond | |
- is_trainable: False | |
input_keys: target_size_as_tuple,target_size_as_tuple_ref | |
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND | |
params: | |
outdim: 256 # multiplied by two | |
first_stage_config: | |
target: sgm.models.autoencoder.AutoencoderKLInferenceWrapper | |
params: | |
ckpt_path: pretrained-models/sdxl_vae.safetensors | |
embed_dim: 4 | |
monitor: val/rec_loss | |
ddconfig: | |
attn_type: vanilla-xformers | |
double_z: true | |
z_channels: 4 | |
resolution: 256 | |
in_channels: 3 | |
out_ch: 3 | |
ch: 128 | |
ch_mult: [1, 2, 4, 4] | |
num_res_blocks: 2 | |
attn_resolutions: [] | |
dropout: 0.0 | |
lossconfig: | |
target: torch.nn.Identity | |
loss_fn_config: | |
target: sgm.modules.diffusionmodules.loss.StandardDiffusionLossImgRef | |
params: | |
sigma_sampler_config: | |
target: sgm.modules.diffusionmodules.sigma_sampling.CubicSampling | |
params: | |
num_idx: 1000 | |
discretization_config: | |
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization | |
sigma_sampler_config_ref: | |
target: sgm.modules.diffusionmodules.sigma_sampling.DiscreteSampling | |
params: | |
num_idx: 50 | |
discretization_config: | |
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization | |
sampler_config: | |
target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler | |
params: | |
num_steps: 50 | |
discretization_config: | |
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization | |
guider_config: | |
target: sgm.modules.diffusionmodules.guiders.VanillaCFGImgRef | |
params: | |
scale: 7.5 | |
data: | |
target: sgm.data.data_co3d.CustomDataDictLoader | |
params: | |
batch_size: 1 | |
num_workers: 4 | |
category: teddybear | |
img_size: 512 | |
skip: 2 | |
num_images: 5 | |
mask_images: True | |
single_id: 0 | |
bbox: True | |
addreg: True | |
drop_ratio: 0.25 | |
drop_txt: 0.1 | |
modifier_token: <new1> | |
lightning: | |
modelcheckpoint: | |
params: | |
every_n_train_steps: 1600 | |
save_top_k: -1 | |
save_on_train_epoch_end: False | |
callbacks: | |
metrics_over_trainsteps_checkpoint: | |
params: | |
every_n_train_steps: 25000 | |
image_logger: | |
target: main.ImageLogger | |
params: | |
disabled: False | |
enable_autocast: False | |
batch_frequency: 5000 | |
max_images: 8 | |
increase_log_steps: False | |
log_first_step: False | |
log_images_kwargs: | |
use_ema_scope: False | |
N: 1 | |
n_rows: 2 | |
trainer: | |
devices: 0,1,2,3 | |
benchmark: True | |
num_sanity_val_steps: 0 | |
accumulate_grad_batches: 1 | |
max_steps: 1610 | |
# val_check_interval: 400 | |