customdiffusion360 / configs /train_co3d_concept.yaml
customdiffusion360's picture
first commit
ad7bc89
raw
history blame
5.87 kB
model:
base_learning_rate: 1.0e-4
target: sgm.models.diffusion.DiffusionEngine
params:
scale_factor: 0.13025
disable_first_stage_autocast: True
trainkeys: pose
multiplier: 0.05
loss_rgb_lambda: 5
loss_fg_lambda: 10
loss_bg_lambda: 10
log_keys:
- txt
denoiser_config:
target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
params:
num_idx: 1000
weighting_config:
target: sgm.modules.diffusionmodules.denoiser_weighting.EpsWeighting
scaling_config:
target: sgm.modules.diffusionmodules.denoiser_scaling.EpsScaling
discretization_config:
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
network_config:
target: sgm.modules.diffusionmodules.openaimodel.UNetModel
params:
adm_in_channels: 2816
num_classes: sequential
use_checkpoint: False
in_channels: 4
out_channels: 4
model_channels: 320
attention_resolutions: [4, 2]
num_res_blocks: 2
channel_mult: [1, 2, 4]
num_head_channels: 64
use_linear_in_transformer: True
transformer_depth: [1, 2, 10]
context_dim: 2048
spatial_transformer_attn_type: softmax-xformers
image_cross_blocks: [0, 2, 4, 6, 8, 10]
rgb: True
far: 2
num_samples: 24
not_add_context_in_triplane: False
rgb_predict: True
add_lora: False
average: False
use_prev_weights_imp_sample: True
stratified: True
imp_sampling_percent: 0.9
conditioner_config:
target: sgm.modules.GeneralConditioner
params:
emb_models:
# crossattn cond
- is_trainable: False
input_keys: txt,txt_ref
target: sgm.modules.encoders.modules.FrozenCLIPEmbedder
params:
layer: hidden
layer_idx: 11
modifier_token: <new1>
# crossattn and vector cond
- is_trainable: False
input_keys: txt,txt_ref
target: sgm.modules.encoders.modules.FrozenOpenCLIPEmbedder
params:
arch: ViT-bigG-14
version: laion2b_s39b_b160k
layer: penultimate
always_return_pooled: True
legacy: False
modifier_token: <new1>
# vector cond
- is_trainable: False
input_keys: original_size_as_tuple,original_size_as_tuple_ref
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
params:
outdim: 256 # multiplied by two
# vector cond
- is_trainable: False
input_keys: crop_coords_top_left,crop_coords_top_left_ref
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
params:
outdim: 256 # multiplied by two
# vector cond
- is_trainable: False
input_keys: target_size_as_tuple,target_size_as_tuple_ref
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND
params:
outdim: 256 # multiplied by two
first_stage_config:
target: sgm.models.autoencoder.AutoencoderKLInferenceWrapper
params:
ckpt_path: pretrained-models/sdxl_vae.safetensors
embed_dim: 4
monitor: val/rec_loss
ddconfig:
attn_type: vanilla-xformers
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [1, 2, 4, 4]
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
loss_fn_config:
target: sgm.modules.diffusionmodules.loss.StandardDiffusionLossImgRef
params:
sigma_sampler_config:
target: sgm.modules.diffusionmodules.sigma_sampling.CubicSampling
params:
num_idx: 1000
discretization_config:
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
sigma_sampler_config_ref:
target: sgm.modules.diffusionmodules.sigma_sampling.DiscreteSampling
params:
num_idx: 50
discretization_config:
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
sampler_config:
target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler
params:
num_steps: 50
discretization_config:
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization
guider_config:
target: sgm.modules.diffusionmodules.guiders.VanillaCFGImgRef
params:
scale: 7.5
data:
target: sgm.data.data_co3d.CustomDataDictLoader
params:
batch_size: 1
num_workers: 4
category: teddybear
img_size: 512
skip: 2
num_images: 5
mask_images: True
single_id: 0
bbox: True
addreg: True
drop_ratio: 0.25
drop_txt: 0.1
modifier_token: <new1>
lightning:
modelcheckpoint:
params:
every_n_train_steps: 1600
save_top_k: -1
save_on_train_epoch_end: False
callbacks:
metrics_over_trainsteps_checkpoint:
params:
every_n_train_steps: 25000
image_logger:
target: main.ImageLogger
params:
disabled: False
enable_autocast: False
batch_frequency: 5000
max_images: 8
increase_log_steps: False
log_first_step: False
log_images_kwargs:
use_ema_scope: False
N: 1
n_rows: 2
trainer:
devices: 0,1,2,3
benchmark: True
num_sanity_val_steps: 0
accumulate_grad_batches: 1
max_steps: 1610
# val_check_interval: 400