Spaces:
Runtime error
Runtime error
from typing import Dict, List, Optional, Tuple, Union | |
import math | |
import torch | |
import torch.nn as nn | |
from ...modules.autoencoding.lpips.loss.lpips import LPIPS | |
from ...modules.encoders.modules import GeneralConditioner | |
from ...util import append_dims, instantiate_from_config | |
from .denoiser import Denoiser | |
class StandardDiffusionLoss(nn.Module): | |
def __init__( | |
self, | |
sigma_sampler_config: dict, | |
loss_weighting_config: dict, | |
loss_type: str = "l2", | |
offset_noise_level: float = 0.0, | |
batch2model_keys: Optional[Union[str, List[str]]] = None, | |
): | |
super().__init__() | |
assert loss_type in ["l2", "l1", "lpips"] | |
self.sigma_sampler = instantiate_from_config(sigma_sampler_config) | |
self.loss_weighting = instantiate_from_config(loss_weighting_config) | |
self.loss_type = loss_type | |
self.offset_noise_level = offset_noise_level | |
if loss_type == "lpips": | |
self.lpips = LPIPS().eval() | |
if not batch2model_keys: | |
batch2model_keys = [] | |
if isinstance(batch2model_keys, str): | |
batch2model_keys = [batch2model_keys] | |
self.batch2model_keys = set(batch2model_keys) | |
def get_noised_input( | |
self, sigmas_bc: torch.Tensor, noise: torch.Tensor, input: torch.Tensor | |
) -> torch.Tensor: | |
noised_input = input + noise * sigmas_bc | |
return noised_input | |
def forward( | |
self, | |
network: nn.Module, | |
denoiser: Denoiser, | |
conditioner: GeneralConditioner, | |
input: torch.Tensor, | |
batch: Dict, | |
) -> torch.Tensor: | |
cond = conditioner(batch) | |
return self._forward(network, denoiser, cond, input, batch) | |
def _forward( | |
self, | |
network: nn.Module, | |
denoiser: Denoiser, | |
cond: Dict, | |
input: torch.Tensor, | |
batch: Dict, | |
) -> Tuple[torch.Tensor, Dict]: | |
additional_model_inputs = { | |
key: batch[key] for key in self.batch2model_keys.intersection(batch) | |
} | |
sigmas = self.sigma_sampler(input.shape[0]).to(input) | |
noise = torch.randn_like(input) | |
if self.offset_noise_level > 0.0: | |
offset_shape = ( | |
(input.shape[0], 1, input.shape[2]) | |
if self.n_frames is not None | |
else (input.shape[0], input.shape[1]) | |
) | |
noise = noise + self.offset_noise_level * append_dims( | |
torch.randn(offset_shape, device=input.device), | |
input.ndim, | |
) | |
sigmas_bc = append_dims(sigmas, input.ndim) | |
noised_input = self.get_noised_input(sigmas_bc, noise, input) | |
model_output = denoiser( | |
network, noised_input, sigmas, cond, **additional_model_inputs | |
) | |
w = append_dims(self.loss_weighting(sigmas), input.ndim) | |
return self.get_loss(model_output, input, w) | |
def get_loss(self, model_output, target, w): | |
if self.loss_type == "l2": | |
return torch.mean( | |
(w * (model_output - target) ** 2).reshape(target.shape[0], -1), 1 | |
) | |
elif self.loss_type == "l1": | |
return torch.mean( | |
(w * (model_output - target).abs()).reshape(target.shape[0], -1), 1 | |
) | |
elif self.loss_type == "lpips": | |
loss = self.lpips(model_output, target).reshape(-1) | |
return loss | |
else: | |
raise NotImplementedError(f"Unknown loss type {self.loss_type}") | |
class StandardDiffusionLossImgRef(nn.Module): | |
def __init__( | |
self, | |
sigma_sampler_config: dict, | |
sigma_sampler_config_ref: dict, | |
type: str = "l2", | |
offset_noise_level: float = 0.0, | |
batch2model_keys: Optional[Union[str, List[str]]] = None, | |
): | |
super().__init__() | |
assert type in ["l2", "l1", "lpips"] | |
self.sigma_sampler = instantiate_from_config(sigma_sampler_config) | |
self.sigma_sampler_ref = None | |
if sigma_sampler_config_ref is not None: | |
self.sigma_sampler_ref = instantiate_from_config(sigma_sampler_config_ref) | |
self.type = type | |
self.offset_noise_level = offset_noise_level | |
if type == "lpips": | |
self.lpips = LPIPS().eval() | |
if not batch2model_keys: | |
batch2model_keys = [] | |
if isinstance(batch2model_keys, str): | |
batch2model_keys = [batch2model_keys] | |
self.batch2model_keys = set(batch2model_keys) | |
def __call__(self, network, denoiser, conditioner, input, input_rgb, input_ref, pose, mask, mask_ref, opacity, batch): | |
cond = conditioner(batch) | |
additional_model_inputs = { | |
key: batch[key] for key in self.batch2model_keys.intersection(batch) | |
} | |
sigmas = self.sigma_sampler(input.shape[0]).to(input.device) | |
noise = torch.randn_like(input) | |
if self.offset_noise_level > 0.0: | |
noise = noise + self.offset_noise_level * append_dims( | |
torch.randn(input.shape[0], device=input.device), input.ndim | |
) | |
additional_model_inputs['pose'] = pose | |
additional_model_inputs['mask_ref'] = mask_ref | |
noised_input = input + noise * append_dims(sigmas, input.ndim) | |
if self.sigma_sampler_ref is not None: | |
sigmas_ref = self.sigma_sampler_ref(input.shape[0]).to(input.device) | |
if input_ref is not None: | |
noise = torch.randn_like(input_ref) | |
if self.offset_noise_level > 0.0: | |
noise = noise + self.offset_noise_level * append_dims( | |
torch.randn(input_ref.shape[0], device=input_ref.device), input_ref.ndim | |
) | |
input_ref = input_ref + noise * append_dims(sigmas_ref, input_ref.ndim) | |
additional_model_inputs['sigmas_ref'] = sigmas_ref | |
additional_model_inputs['input_ref'] = input_ref | |
model_output, fg_mask_list, alphas, predicted_rgb_list = denoiser( | |
network, noised_input, sigmas, cond, **additional_model_inputs | |
) | |
w = append_dims(denoiser.w(sigmas), input.ndim) | |
return self.get_loss(model_output, fg_mask_list, predicted_rgb_list, input, input_rgb, w, mask, mask_ref, opacity, alphas) | |
def get_loss(self, model_output, fg_mask_list, predicted_rgb_list, target, target_rgb, w, mask, mask_ref, opacity, alphas_list): | |
loss_rgb = [] | |
loss_fg = [] | |
loss_bg = [] | |
with torch.amp.autocast(device_type='cuda', dtype=torch.float32): | |
if self.type == "l2": | |
loss = (w * (model_output - target) ** 2) | |
if mask is not None: | |
loss_l2 = (loss*mask).sum([1, 2, 3])/(mask.sum([1, 2, 3]) + 1e-6) | |
else: | |
loss_l2 = torch.mean(loss.reshape(target.shape[0], -1), 1) | |
if len(fg_mask_list) > 0 and len(alphas_list) > 0: | |
for fg_mask, alphas in zip(fg_mask_list, alphas_list): | |
size = int(math.sqrt(fg_mask.size(1))) | |
opacity = torch.nn.functional.interpolate(opacity, size=size, antialias=True, mode='bilinear').detach() | |
fg_mask = torch.clamp(fg_mask.reshape(-1, size*size), 0., 1.) | |
loss_fg_ = ((fg_mask - opacity.reshape(-1, size*size))**2).mean(1) #torch.nn.functional.binary_cross_entropy(rgb, torch.clip(mask.reshape(-1, size*size), 0., 1.), reduce=False) | |
loss_bg_ = (alphas - opacity.reshape(-1, size*size, 1, 1)).abs()*(1-opacity.reshape(-1, size*size, 1, 1)) #alpahs : b hw d 1 | |
loss_bg_ = (loss_bg_*((opacity.reshape(-1, size*size, 1, 1) < 0.1)*1)).mean([1, 2, 3]) | |
loss_fg.append(loss_fg_) | |
loss_bg.append(loss_bg_) | |
loss_fg = torch.stack(loss_fg, 1) | |
loss_bg = torch.stack(loss_bg, 1) | |
if len(predicted_rgb_list) > 0: | |
for rgb in predicted_rgb_list: | |
size = int(math.sqrt(rgb.size(1))) | |
mask_ = torch.nn.functional.interpolate(mask, size=size, antialias=True, mode='bilinear').detach() | |
loss_rgb_ = ((torch.nn.functional.interpolate(target_rgb*0.5+0.5, size=size, antialias=True, mode='bilinear').detach() - rgb.reshape(-1, size, size, 3).permute(0, 3, 1, 2)) ** 2) | |
loss_rgb.append((loss_rgb_*mask_).sum([1, 2, 3])/(mask.sum([1, 2, 3]) + 1e-6)) | |
loss_rgb = torch.stack(loss_rgb, 1) | |
# print(loss_l2, loss_fg, loss_bg, loss_rgb) | |
return loss_l2, loss_fg, loss_bg, loss_rgb | |
elif self.type == "l1": | |
return torch.mean( | |
(w * (model_output - target).abs()).reshape(target.shape[0], -1), 1 | |
), loss_rgb | |
elif self.type == "lpips": | |
loss = self.lpips(model_output, target).reshape(-1) | |
return loss, loss_rgb | |