from abc import abstractmethod from typing import Any, Tuple import torch import torch.nn.functional as F from torch import nn class AbstractRegularizer(nn.Module): def __init__(self): super().__init__() def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]: raise NotImplementedError() @abstractmethod def get_trainable_parameters(self) -> Any: raise NotImplementedError() class IdentityRegularizer(AbstractRegularizer): def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]: return z, dict() def get_trainable_parameters(self) -> Any: yield from () def measure_perplexity( predicted_indices: torch.Tensor, num_centroids: int ) -> Tuple[torch.Tensor, torch.Tensor]: # src: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py # eval cluster perplexity. when perplexity == num_embeddings then all clusters are used exactly equally encodings = ( F.one_hot(predicted_indices, num_centroids).float().reshape(-1, num_centroids) ) avg_probs = encodings.mean(0) perplexity = (-(avg_probs * torch.log(avg_probs + 1e-10)).sum()).exp() cluster_use = torch.sum(avg_probs > 0) return perplexity, cluster_use