import logging import math from abc import abstractmethod from functools import partial from typing import Iterable, List, Optional, Tuple, Union import numpy as np import torch as th import torch.nn as nn import torch.nn.functional as F from einops import rearrange import torch from torch.profiler import profile, record_function, ProfilerActivity from ...modules.attention import SpatialTransformer from ...modules.diffusionmodules.util import ( avg_pool_nd, checkpoint, conv_nd, linear, normalization, timestep_embedding, zero_module, ) from ...util import default, exists logpy = logging.getLogger(__name__) class AttentionPool2d(nn.Module): """ Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py """ def __init__( self, spacial_dim: int, embed_dim: int, num_heads_channels: int, output_dim: int = None, ): super().__init__() self.positional_embedding = nn.Parameter( th.randn(embed_dim, spacial_dim**2 + 1) / embed_dim**0.5 ) self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1) self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1) self.num_heads = embed_dim // num_heads_channels self.attention = QKVAttention(self.num_heads) def forward(self, x): b, c, *_spatial = x.shape x = x.reshape(b, c, -1) # NC(HW) x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1) x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1) x = self.qkv_proj(x) x = self.attention(x) x = self.c_proj(x) return x[:, :, 0] class TimestepBlock(nn.Module): """ Any module where forward() takes timestep embeddings as a second argument. """ @abstractmethod def forward(self, x, emb): """ Apply the module to `x` given `emb` timestep embeddings. """ class TimestepEmbedSequential(nn.Sequential, TimestepBlock): """ A sequential module that passes timestep embeddings to the children that support it as an extra input. """ def forward( self, x, emb, context=None, xr=None, embr=None, contextr=None, pose=None, mask_ref=None, prev_weights=None, ): weights = None fg_mask = None alphas = None predicted_rgb = None for layer in self: if isinstance(layer, TimestepBlock): x = layer(x, emb) if xr is not None: with torch.no_grad(): xr = layer(xr, embr) xr = xr.detach() elif isinstance(layer, SpatialTransformer): x, xr, fg_mask, weights, alphas, predicted_rgb = layer(x, xr, context, contextr, pose, mask_ref, prev_weights=prev_weights) else: x = layer(x) if xr is not None: with torch.no_grad(): xr = layer(xr) xr = xr.detach() return x, xr, fg_mask, weights, alphas, predicted_rgb class Upsample(nn.Module): """ An upsampling layer with an optional convolution. :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then upsampling occurs in the inner-two dimensions. """ def __init__( self, channels: int, use_conv: bool, dims: int = 2, out_channels: Optional[int] = None, padding: int = 1, third_up: bool = False, kernel_size: int = 3, scale_factor: int = 2, ): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.dims = dims self.third_up = third_up self.scale_factor = scale_factor if use_conv: self.conv = conv_nd( dims, self.channels, self.out_channels, kernel_size, padding=padding ) def forward(self, x: th.Tensor) -> th.Tensor: assert x.shape[1] == self.channels if self.dims == 3: t_factor = 1 if not self.third_up else self.scale_factor x = F.interpolate( x, ( t_factor * x.shape[2], x.shape[3] * self.scale_factor, x.shape[4] * self.scale_factor, ), mode="nearest", ) else: x = F.interpolate(x, scale_factor=self.scale_factor, mode="nearest") if self.use_conv: x = self.conv(x) return x class TransposedUpsample(nn.Module): "Learned 2x upsampling without padding" def __init__(self, channels, out_channels=None, ks=5): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.up = nn.ConvTranspose2d( self.channels, self.out_channels, kernel_size=ks, stride=2 ) def forward(self, x): return self.up(x) class Downsample(nn.Module): """ A downsampling layer with an optional convolution. :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then downsampling occurs in the inner-two dimensions. """ def __init__( self, channels: int, use_conv: bool, dims: int = 2, out_channels: Optional[int] = None, padding: int = 1, third_down: bool = False, ): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.dims = dims stride = 2 if dims != 3 else ((1, 2, 2) if not third_down else (2, 2, 2)) if use_conv: logpy.info(f"Building a Downsample layer with {dims} dims.") logpy.info( f" --> settings are: \n in-chn: {self.channels}, out-chn: {self.out_channels}, " f"kernel-size: 3, stride: {stride}, padding: {padding}" ) if dims == 3: logpy.info(f" --> Downsampling third axis (time): {third_down}") self.op = conv_nd( dims, self.channels, self.out_channels, 3, stride=stride, padding=padding, ) else: assert self.channels == self.out_channels self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) def forward(self, x: th.Tensor) -> th.Tensor: assert x.shape[1] == self.channels return self.op(x) class ResBlock(TimestepBlock): """ A residual block that can optionally change the number of channels. :param channels: the number of input channels. :param emb_channels: the number of timestep embedding channels. :param dropout: the rate of dropout. :param out_channels: if specified, the number of out channels. :param use_conv: if True and out_channels is specified, use a spatial convolution instead of a smaller 1x1 convolution to change the channels in the skip connection. :param dims: determines if the signal is 1D, 2D, or 3D. :param use_checkpoint: if True, use gradient checkpointing on this module. :param up: if True, use this block for upsampling. :param down: if True, use this block for downsampling. """ def __init__( self, channels: int, emb_channels: int, dropout: float, out_channels: Optional[int] = None, use_conv: bool = False, use_scale_shift_norm: bool = False, dims: int = 2, use_checkpoint: bool = False, up: bool = False, down: bool = False, kernel_size: int = 3, exchange_temb_dims: bool = False, skip_t_emb: bool = False, ): super().__init__() self.channels = channels self.emb_channels = emb_channels self.dropout = dropout self.out_channels = out_channels or channels self.use_conv = use_conv self.use_checkpoint = use_checkpoint self.use_scale_shift_norm = use_scale_shift_norm self.exchange_temb_dims = exchange_temb_dims if isinstance(kernel_size, Iterable): padding = [k // 2 for k in kernel_size] else: padding = kernel_size // 2 self.in_layers = nn.Sequential( normalization(channels), nn.SiLU(), conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding), ) self.updown = up or down if up: self.h_upd = Upsample(channels, False, dims) self.x_upd = Upsample(channels, False, dims) elif down: self.h_upd = Downsample(channels, False, dims) self.x_upd = Downsample(channels, False, dims) else: self.h_upd = self.x_upd = nn.Identity() self.skip_t_emb = skip_t_emb self.emb_out_channels = ( 2 * self.out_channels if use_scale_shift_norm else self.out_channels ) if self.skip_t_emb: logpy.info(f"Skipping timestep embedding in {self.__class__.__name__}") assert not self.use_scale_shift_norm self.emb_layers = None self.exchange_temb_dims = False else: self.emb_layers = nn.Sequential( nn.SiLU(), linear( emb_channels, self.emb_out_channels, ), ) self.out_layers = nn.Sequential( normalization(self.out_channels), nn.SiLU(), nn.Dropout(p=dropout), zero_module( conv_nd( dims, self.out_channels, self.out_channels, kernel_size, padding=padding, ) ), ) if self.out_channels == channels: self.skip_connection = nn.Identity() elif use_conv: self.skip_connection = conv_nd( dims, channels, self.out_channels, kernel_size, padding=padding ) else: self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) def forward(self, x: th.Tensor, emb: th.Tensor) -> th.Tensor: """ Apply the block to a Tensor, conditioned on a timestep embedding. :param x: an [N x C x ...] Tensor of features. :param emb: an [N x emb_channels] Tensor of timestep embeddings. :return: an [N x C x ...] Tensor of outputs. """ return checkpoint( self._forward, (x, emb), self.parameters(), self.use_checkpoint ) def _forward(self, x: th.Tensor, emb: th.Tensor) -> th.Tensor: if self.updown: in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] h = in_rest(x) h = self.h_upd(h) x = self.x_upd(x) h = in_conv(h) else: h = self.in_layers(x) if self.skip_t_emb: emb_out = th.zeros_like(h) else: emb_out = self.emb_layers(emb).type(h.dtype) while len(emb_out.shape) < len(h.shape): emb_out = emb_out[..., None] if self.use_scale_shift_norm: out_norm, out_rest = self.out_layers[0], self.out_layers[1:] scale, shift = th.chunk(emb_out, 2, dim=1) h = out_norm(h) * (1 + scale) + shift h = out_rest(h) else: if self.exchange_temb_dims: emb_out = rearrange(emb_out, "b t c ... -> b c t ...") h = h + emb_out h = self.out_layers(h) return self.skip_connection(x) + h class AttentionBlock(nn.Module): """ An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted to the N-d case. https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. """ def __init__( self, channels: int, num_heads: int = 1, num_head_channels: int = -1, use_checkpoint: bool = False, use_new_attention_order: bool = False, ): super().__init__() self.channels = channels if num_head_channels == -1: self.num_heads = num_heads else: assert ( channels % num_head_channels == 0 ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" self.num_heads = channels // num_head_channels self.use_checkpoint = use_checkpoint self.norm = normalization(channels) self.qkv = conv_nd(1, channels, channels * 3, 1) if use_new_attention_order: # split qkv before split heads self.attention = QKVAttention(self.num_heads) else: # split heads before split qkv self.attention = QKVAttentionLegacy(self.num_heads) self.proj_out = zero_module(conv_nd(1, channels, channels, 1)) def forward(self, x, **kwargs): # TODO add crossframe attention and use mixed checkpoint return checkpoint( self._forward, (x,), self.parameters(), True ) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!! def _forward(self, x: th.Tensor) -> th.Tensor: b, c, *spatial = x.shape x = x.reshape(b, c, -1) qkv = self.qkv(self.norm(x)) h = self.attention(qkv) h = self.proj_out(h) return (x + h).reshape(b, c, *spatial) def count_flops_attn(model, _x, y): """ A counter for the `thop` package to count the operations in an attention operation. Meant to be used like: macs, params = thop.profile( model, inputs=(inputs, timestamps), custom_ops={QKVAttention: QKVAttention.count_flops}, ) """ b, c, *spatial = y[0].shape num_spatial = int(np.prod(spatial)) # We perform two matmuls with the same number of ops. # The first computes the weight matrix, the second computes # the combination of the value vectors. matmul_ops = 2 * b * (num_spatial**2) * c model.total_ops += th.DoubleTensor([matmul_ops]) class QKVAttentionLegacy(nn.Module): """ A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping """ def __init__(self, n_heads: int): super().__init__() self.n_heads = n_heads def forward(self, qkv: th.Tensor) -> th.Tensor: """ Apply QKV attention. :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs. :return: an [N x (H * C) x T] tensor after attention. """ bs, width, length = qkv.shape assert width % (3 * self.n_heads) == 0 ch = width // (3 * self.n_heads) q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1) scale = 1 / math.sqrt(math.sqrt(ch)) weight = th.einsum( "bct,bcs->bts", q * scale, k * scale ) # More stable with f16 than dividing afterwards weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) a = th.einsum("bts,bcs->bct", weight, v) return a.reshape(bs, -1, length) @staticmethod def count_flops(model, _x, y): return count_flops_attn(model, _x, y) class QKVAttention(nn.Module): """ A module which performs QKV attention and splits in a different order. """ def __init__(self, n_heads: int): super().__init__() self.n_heads = n_heads def forward(self, qkv: th.Tensor) -> th.Tensor: """ Apply QKV attention. :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs. :return: an [N x (H * C) x T] tensor after attention. """ bs, width, length = qkv.shape assert width % (3 * self.n_heads) == 0 ch = width // (3 * self.n_heads) q, k, v = qkv.chunk(3, dim=1) scale = 1 / math.sqrt(math.sqrt(ch)) weight = th.einsum( "bct,bcs->bts", (q * scale).view(bs * self.n_heads, ch, length), (k * scale).view(bs * self.n_heads, ch, length), ) # More stable with f16 than dividing afterwards weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length)) return a.reshape(bs, -1, length) @staticmethod def count_flops(model, _x, y): return count_flops_attn(model, _x, y) class Timestep(nn.Module): def __init__(self, dim: int): super().__init__() self.dim = dim def forward(self, t: th.Tensor) -> th.Tensor: return timestep_embedding(t, self.dim) class UNetModel(nn.Module): """ The full UNet model with attention and timestep embedding. :param in_channels: channels in the input Tensor. :param model_channels: base channel count for the model. :param out_channels: channels in the output Tensor. :param num_res_blocks: number of residual blocks per downsample. :param attention_resolutions: a collection of downsample rates at which attention will take place. May be a set, list, or tuple. For example, if this contains 4, then at 4x downsampling, attention will be used. :param dropout: the dropout probability. :param channel_mult: channel multiplier for each level of the UNet. :param conv_resample: if True, use learned convolutions for upsampling and downsampling. :param dims: determines if the signal is 1D, 2D, or 3D. :param num_classes: if specified (as an int), then this model will be class-conditional with `num_classes` classes. :param use_checkpoint: use gradient checkpointing to reduce memory usage. :param num_heads: the number of attention heads in each attention layer. :param num_heads_channels: if specified, ignore num_heads and instead use a fixed channel width per attention head. :param num_heads_upsample: works with num_heads to set a different number of heads for upsampling. Deprecated. :param use_scale_shift_norm: use a FiLM-like conditioning mechanism. :param resblock_updown: use residual blocks for up/downsampling. :param use_new_attention_order: use a different attention pattern for potentially increased efficiency. """ def __init__( self, in_channels: int, model_channels: int, out_channels: int, num_res_blocks: int, attention_resolutions: int, dropout: float = 0.0, channel_mult: Union[List, Tuple] = (1, 2, 4, 8), conv_resample: bool = True, dims: int = 2, num_classes: Optional[Union[int, str]] = None, use_checkpoint: bool = False, num_heads: int = -1, num_head_channels: int = -1, num_heads_upsample: int = -1, use_scale_shift_norm: bool = False, resblock_updown: bool = False, transformer_depth: int = 1, context_dim: Optional[int] = None, disable_self_attentions: Optional[List[bool]] = None, num_attention_blocks: Optional[List[int]] = None, disable_middle_self_attn: bool = False, use_linear_in_transformer: bool = False, spatial_transformer_attn_type: str = "softmax", adm_in_channels: Optional[int] = None, use_fairscale_checkpoint=False, offload_to_cpu=False, transformer_depth_middle: Optional[int] = None, ## new args image_cross_blocks: Union[List, Tuple] = None, rgb: bool = False, far: float = 2., num_samples: float = 32, not_add_context_in_triplane: bool = False, rgb_predict: bool = False, add_lora: bool = False, mode: str = 'feature-nerf', average: bool = False, num_freqs: int = 16, use_prev_weights_imp_sample: bool = False, stratified: bool = False, poscontrol_interval: int = 4, imp_sampling_percent: float = 0.9, near_plane: float = 0. ): super().__init__() from omegaconf.listconfig import ListConfig if num_heads_upsample == -1: num_heads_upsample = num_heads if num_heads == -1: assert ( num_head_channels != -1 ), "Either num_heads or num_head_channels has to be set" if num_head_channels == -1: assert ( num_heads != -1 ), "Either num_heads or num_head_channels has to be set" self.in_channels = in_channels self.model_channels = model_channels self.out_channels = out_channels self.rgb = rgb self.rgb_predict = rgb_predict if image_cross_blocks is None: image_cross_blocks = [] if isinstance(transformer_depth, int): transformer_depth = len(channel_mult) * [transformer_depth] elif isinstance(transformer_depth, ListConfig): transformer_depth = list(transformer_depth) transformer_depth_middle = default( transformer_depth_middle, transformer_depth[-1] ) if isinstance(num_res_blocks, int): self.num_res_blocks = len(channel_mult) * [num_res_blocks] else: if len(num_res_blocks) != len(channel_mult): raise ValueError( "provide num_res_blocks either as an int (globally constant) or " "as a list/tuple (per-level) with the same length as channel_mult" ) self.num_res_blocks = num_res_blocks if disable_self_attentions is not None: assert len(disable_self_attentions) == len(channel_mult) if num_attention_blocks is not None: assert len(num_attention_blocks) == len(self.num_res_blocks) assert all( map( lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks)), ) ) logpy.info( f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. " f"This option has LESS priority than attention_resolutions {attention_resolutions}, " f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, " f"attention will still not be set." ) self.attention_resolutions = attention_resolutions self.dropout = dropout self.channel_mult = channel_mult self.conv_resample = conv_resample self.num_classes = num_classes self.use_checkpoint = use_checkpoint self.num_heads = num_heads self.num_head_channels = num_head_channels self.num_heads_upsample = num_heads_upsample assert use_fairscale_checkpoint != use_checkpoint or not ( use_checkpoint or use_fairscale_checkpoint ) self.use_fairscale_checkpoint = False checkpoint_wrapper_fn = ( partial(checkpoint_wrapper, offload_to_cpu=offload_to_cpu) if self.use_fairscale_checkpoint else lambda x: x ) time_embed_dim = model_channels * 4 self.time_embed = checkpoint_wrapper_fn( nn.Sequential( linear(model_channels, time_embed_dim), nn.SiLU(), linear(time_embed_dim, time_embed_dim), ) ) if self.num_classes is not None: if isinstance(self.num_classes, int): self.label_emb = nn.Embedding(num_classes, time_embed_dim) elif self.num_classes == "continuous": logpy.info("setting up linear c_adm embedding layer") self.label_emb = nn.Linear(1, time_embed_dim) elif self.num_classes == "timestep": self.label_emb = checkpoint_wrapper_fn( nn.Sequential( Timestep(model_channels), nn.Sequential( linear(model_channels, time_embed_dim), nn.SiLU(), linear(time_embed_dim, time_embed_dim), ), ) ) elif self.num_classes == "sequential": assert adm_in_channels is not None self.label_emb = nn.Sequential( nn.Sequential( linear(adm_in_channels, time_embed_dim), nn.SiLU(), linear(time_embed_dim, time_embed_dim), ) ) else: raise ValueError self.input_blocks = nn.ModuleList( [ TimestepEmbedSequential( conv_nd(dims, in_channels, model_channels, 3, padding=1) ) ] ) self._feature_size = model_channels input_block_chans = [model_channels] ch = model_channels ds = 1 id_attention = 0 for level, mult in enumerate(channel_mult): for nr in range(self.num_res_blocks[level]): layers = [ checkpoint_wrapper_fn( ResBlock( ch, time_embed_dim, dropout, out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, ) ) ] ch = mult * model_channels if ds in attention_resolutions: if num_head_channels == -1: dim_head = ch // num_heads else: num_heads = ch // num_head_channels dim_head = num_head_channels if context_dim is not None and exists(disable_self_attentions): disabled_sa = disable_self_attentions[level] else: disabled_sa = False if ( not exists(num_attention_blocks) or nr < num_attention_blocks[level] ): layers.append( checkpoint_wrapper_fn( SpatialTransformer( ch, num_heads, dim_head, depth=transformer_depth[level], context_dim=context_dim, disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, attn_type=spatial_transformer_attn_type, use_checkpoint=use_checkpoint, # image_cross=False, image_cross=(id_attention in image_cross_blocks), rgb_predict=self.rgb_predict, far=far, num_samples=num_samples, add_lora=add_lora, mode=mode, average=average, num_freqs=num_freqs, use_prev_weights_imp_sample=use_prev_weights_imp_sample, stratified=stratified, poscontrol_interval=poscontrol_interval, imp_sampling_percent=imp_sampling_percent, near_plane=near_plane, ) ) ) print("({}) in Encoder".format(id_attention)) id_attention += 1 self.input_blocks.append(TimestepEmbedSequential(*layers)) self._feature_size += ch input_block_chans.append(ch) if level != len(channel_mult) - 1: out_ch = ch self.input_blocks.append( TimestepEmbedSequential( checkpoint_wrapper_fn( ResBlock( ch, time_embed_dim, dropout, out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, down=True, ) ) if resblock_updown else Downsample( ch, conv_resample, dims=dims, out_channels=out_ch ) ) ) ch = out_ch input_block_chans.append(ch) ds *= 2 self._feature_size += ch if num_head_channels == -1: dim_head = ch // num_heads else: num_heads = ch // num_head_channels dim_head = num_head_channels self.middle_block = TimestepEmbedSequential( checkpoint_wrapper_fn( ResBlock( ch, time_embed_dim, dropout, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, ) ), checkpoint_wrapper_fn( SpatialTransformer( # always uses a self-attn ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim, disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer, attn_type=spatial_transformer_attn_type, use_checkpoint=use_checkpoint, image_cross=(id_attention in image_cross_blocks), rgb_predict=self.rgb_predict, far=far, num_samples=num_samples, add_lora=add_lora, mode=mode, average=average, num_freqs=num_freqs, use_prev_weights_imp_sample=use_prev_weights_imp_sample, stratified=stratified, poscontrol_interval=poscontrol_interval, imp_sampling_percent=imp_sampling_percent, near_plane=near_plane, ) ), checkpoint_wrapper_fn( ResBlock( ch, time_embed_dim, dropout, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, ) ), ) print("({}) in Middle".format(id_attention)) id_attention += 1 self._feature_size += ch self.output_blocks = nn.ModuleList([]) for level, mult in list(enumerate(channel_mult))[::-1]: for i in range(self.num_res_blocks[level] + 1): ich = input_block_chans.pop() layers = [ checkpoint_wrapper_fn( ResBlock( ch + ich, time_embed_dim, dropout, out_channels=model_channels * mult, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, ) ) ] ch = model_channels * mult if ds in attention_resolutions: if num_head_channels == -1: dim_head = ch // num_heads else: num_heads = ch // num_head_channels dim_head = num_head_channels if exists(disable_self_attentions): disabled_sa = disable_self_attentions[level] else: disabled_sa = False if ( not exists(num_attention_blocks) or i < num_attention_blocks[level] ): layers.append( checkpoint_wrapper_fn( SpatialTransformer( ch, num_heads, dim_head, depth=transformer_depth[level], context_dim=context_dim, disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, attn_type=spatial_transformer_attn_type, use_checkpoint=use_checkpoint, image_cross=(id_attention in image_cross_blocks), rgb_predict=self.rgb_predict, far=far, num_samples=num_samples, add_lora=add_lora, mode=mode, average=average, num_freqs=num_freqs, use_prev_weights_imp_sample=use_prev_weights_imp_sample, stratified=stratified, poscontrol_interval=poscontrol_interval, imp_sampling_percent=imp_sampling_percent, near_plane=near_plane, ) ) ) print("({}) in Decoder".format(id_attention)) id_attention += 1 if level and i == self.num_res_blocks[level]: out_ch = ch layers.append( checkpoint_wrapper_fn( ResBlock( ch, time_embed_dim, dropout, out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, up=True, ) ) if resblock_updown else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) ) ds //= 2 self.output_blocks.append(TimestepEmbedSequential(*layers)) self._feature_size += ch self.out = checkpoint_wrapper_fn( nn.Sequential( normalization(ch), nn.SiLU(), zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)), ) ) def forward( self, x: th.Tensor, timesteps: Optional[th.Tensor] = None, context: Optional[th.Tensor] = None, y: Optional[th.Tensor] = None, timesteps2: Optional[th.Tensor] = None, **kwargs, ): """ Apply the model to an input batch. :param x: an [N x C x ...] Tensor of inputs. :param timesteps: a 1-D batch of timesteps. :param context: conditioning plugged in via crossattn :param y: an [N] Tensor of labels, if class-conditional. :return: an [N x C x ...] Tensor of outputs. """ with torch.amp.autocast(device_type='cuda', dtype=torch.float32 if self.training else torch.float16): b = x.size(0) contextr = None reference_image = False pose = None mask_ref = None embr = None fg_mask_list = [] use_img_cond = True alphas_list = [] predicted_rgb_list = [] if 'pose' in kwargs: pose = kwargs['pose'] if 'mask_ref' in kwargs: mask_ref = kwargs['mask_ref'] if 'input_ref' in kwargs: reference_image = True contextr = context[b:] if y is not None: yr = y[b:] xr = kwargs['input_ref'] if xr is not None: b, n = xr.shape[:2] context = context[: b] if y is not None: y = y[:b] assert (y is not None) == ( self.num_classes is not None ), "must specify y if and only if the model is class-conditional" t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) emb = self.time_embed(t_emb) if self.num_classes is not None: assert y.shape[0] == x.shape[0] emb = emb + self.label_emb(y) h = x hr = None hs = [] hrs = [] use_img_cond = True if reference_image: with torch.no_grad(): if 'sigmas_ref' in kwargs: t_embr = timestep_embedding(kwargs['sigmas_ref'], self.model_channels, repeat_only=False) elif timesteps2 is not None: t_embr = timestep_embedding(timesteps2, self.model_channels, repeat_only=False) else: t_embr = timestep_embedding(torch.zeros_like(timesteps), self.model_channels, repeat_only=False) embr = (self.time_embed(t_embr)[:, None].expand(-1, xr.size(1), -1)).reshape(b*n, -1) if self.num_classes is not None: embr = embr + self.label_emb(yr.reshape(b*n, -1)) hr = rearrange(xr, "b n ... -> (b n) ...", b=b, n=n) hr = hr.to(memory_format=torch.channels_last) for module in self.input_blocks: h, hr, fg_mask, weights, alphas, predicted_rgb = module(h, emb, context, hr, embr, contextr, pose, mask_ref=mask_ref, prev_weights=None) if fg_mask is not None: fg_mask_list += fg_mask if alphas is not None: alphas_list += alphas if predicted_rgb is not None: predicted_rgb_list.extend(predicted_rgb) hs.append(h) hrs.append(hr) h, hr, fg_mask, weights, alphas, predicted_rgb = self.middle_block(h, emb, context, hr, embr, contextr, pose, mask_ref=mask_ref, prev_weights=None) if fg_mask is not None: fg_mask_list += fg_mask if alphas is not None: alphas_list += alphas if predicted_rgb is not None: predicted_rgb_list.extend(predicted_rgb) for module in self.output_blocks: h = th.cat([h, hs.pop()], dim=1) if reference_image: hr = th.cat([hr, hrs.pop()], dim=1) h, hr, fg_mask, weights, alphas, predicted_rgb = module(h, emb, context, hr, embr, contextr, pose, mask_ref=mask_ref, prev_weights=None) if fg_mask is not None: fg_mask_list += fg_mask if alphas is not None: alphas_list += alphas if predicted_rgb is not None: predicted_rgb_list.extend(predicted_rgb) h = h.type(x.dtype) if reference_image: hr = hr.type(xr.dtype) out = self.out(h) if use_img_cond: return out, fg_mask_list, alphas_list, predicted_rgb_list else: return out class NoTimeUNetModel(UNetModel): def forward(self, x, timesteps=None, context=None, y=None, **kwargs): timesteps = th.zeros_like(timesteps) return super().forward(x, timesteps, context, y, **kwargs) class EncoderUNetModel(nn.Module): """ The half UNet model with attention and timestep embedding. For usage, see UNet. """ def __init__( self, image_size, in_channels, model_channels, out_channels, num_res_blocks, attention_resolutions, dropout=0, channel_mult=(1, 2, 4, 8), conv_resample=True, dims=2, use_checkpoint=False, use_fp16=False, num_heads=1, num_head_channels=-1, num_heads_upsample=-1, use_scale_shift_norm=False, resblock_updown=False, use_new_attention_order=False, pool="adaptive", *args, **kwargs, ): super().__init__() if num_heads_upsample == -1: num_heads_upsample = num_heads self.in_channels = in_channels self.model_channels = model_channels self.out_channels = out_channels self.num_res_blocks = num_res_blocks self.attention_resolutions = attention_resolutions self.dropout = dropout self.channel_mult = channel_mult self.conv_resample = conv_resample self.use_checkpoint = use_checkpoint self.dtype = th.float16 if use_fp16 else th.float32 self.num_heads = num_heads self.num_head_channels = num_head_channels self.num_heads_upsample = num_heads_upsample time_embed_dim = model_channels * 4 self.time_embed = nn.Sequential( linear(model_channels, time_embed_dim), nn.SiLU(), linear(time_embed_dim, time_embed_dim), ) self.input_blocks = nn.ModuleList( [ TimestepEmbedSequential( conv_nd(dims, in_channels, model_channels, 3, padding=1) ) ] ) self._feature_size = model_channels input_block_chans = [model_channels] ch = model_channels ds = 1 for level, mult in enumerate(channel_mult): for _ in range(num_res_blocks): layers = [ ResBlock( ch, time_embed_dim, dropout, out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, ) ] ch = mult * model_channels if ds in attention_resolutions: layers.append( AttentionBlock( ch, use_checkpoint=use_checkpoint, num_heads=num_heads, num_head_channels=num_head_channels, use_new_attention_order=use_new_attention_order, ) ) self.input_blocks.append(TimestepEmbedSequential(*layers)) self._feature_size += ch input_block_chans.append(ch) if level != len(channel_mult) - 1: out_ch = ch self.input_blocks.append( TimestepEmbedSequential( ResBlock( ch, time_embed_dim, dropout, out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, down=True, ) if resblock_updown else Downsample( ch, conv_resample, dims=dims, out_channels=out_ch ) ) ) ch = out_ch input_block_chans.append(ch) ds *= 2 self._feature_size += ch self.middle_block = TimestepEmbedSequential( ResBlock( ch, time_embed_dim, dropout, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, ), AttentionBlock( ch, use_checkpoint=use_checkpoint, num_heads=num_heads, num_head_channels=num_head_channels, use_new_attention_order=use_new_attention_order, ), ResBlock( ch, time_embed_dim, dropout, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, ), ) self._feature_size += ch self.pool = pool if pool == "adaptive": self.out = nn.Sequential( normalization(ch), nn.SiLU(), nn.AdaptiveAvgPool2d((1, 1)), zero_module(conv_nd(dims, ch, out_channels, 1)), nn.Flatten(), ) elif pool == "attention": assert num_head_channels != -1 self.out = nn.Sequential( normalization(ch), nn.SiLU(), AttentionPool2d( (image_size // ds), ch, num_head_channels, out_channels ), ) elif pool == "spatial": self.out = nn.Sequential( nn.Linear(self._feature_size, 2048), nn.ReLU(), nn.Linear(2048, self.out_channels), ) elif pool == "spatial_v2": self.out = nn.Sequential( nn.Linear(self._feature_size, 2048), normalization(2048), nn.SiLU(), nn.Linear(2048, self.out_channels), ) else: raise NotImplementedError(f"Unexpected {pool} pooling") def convert_to_fp16(self): """ Convert the torso of the model to float16. """ self.input_blocks.apply(convert_module_to_f16) self.middle_block.apply(convert_module_to_f16) def convert_to_fp32(self): """ Convert the torso of the model to float32. """ self.input_blocks.apply(convert_module_to_f32) self.middle_block.apply(convert_module_to_f32) def forward(self, x, timesteps): """ Apply the model to an input batch. :param x: an [N x C x ...] Tensor of inputs. :param timesteps: a 1-D batch of timesteps. :return: an [N x K] Tensor of outputs. """ emb = self.time_embed(timestep_embedding(timesteps, self.model_channels)) results = [] # h = x.type(self.dtype) h = x for module in self.input_blocks: h = module(h, emb) if self.pool.startswith("spatial"): results.append(h.type(x.dtype).mean(dim=(2, 3))) h = self.middle_block(h, emb) if self.pool.startswith("spatial"): results.append(h.type(x.dtype).mean(dim=(2, 3))) h = th.cat(results, axis=-1) return self.out(h) else: h = h.type(x.dtype) return self.out(h) if __name__ == "__main__": class Dummy(nn.Module): def __init__(self, in_channels=3, model_channels=64): super().__init__() self.input_blocks = nn.ModuleList( [ TimestepEmbedSequential( conv_nd(2, in_channels, model_channels, 3, padding=1) ) ] ) model = UNetModel( use_checkpoint=True, image_size=64, in_channels=4, out_channels=4, model_channels=128, attention_resolutions=[4, 2], num_res_blocks=2, channel_mult=[1, 2, 4], num_head_channels=64, use_spatial_transformer=False, use_linear_in_transformer=True, transformer_depth=1, legacy=False, ).cuda() x = th.randn(11, 4, 64, 64).cuda() t = th.randint(low=0, high=10, size=(11,), device="cuda") o = model(x, t) print("done.")