Spaces:
Runtime error
Runtime error
import os | |
from speechbrain.pretrained.interfaces import foreign_class | |
import gradio as gr | |
import warnings | |
warnings.filterwarnings("ignore") | |
# Loading the speechbrain emotion detection model | |
learner = foreign_class( | |
source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP", | |
pymodule_file="custom_interface.py", | |
classname="CustomEncoderWav2vec2Classifier" | |
) | |
# Building prediction function for gradio | |
emotion_dict = { | |
'sad': 'Sad', | |
'hap': 'Happy', | |
'ang': 'Anger', | |
'fea': 'Fear', | |
'sur': 'Surprised', | |
'neu': 'Neutral' | |
} | |
def predict_emotion(file_path): | |
# Since we get the file path from the dropdown, we don't need to access the `.name` property | |
out_prob, score, index, text_lab = learner.classify_file(file_path) | |
return emotion_dict[text_lab[0]] | |
# Folder containing audio files | |
folder = "prerecorded" | |
# Assuming that the 'prerecorded' folder is in the current working directory | |
# Change the working directory path if necessary | |
audio_files = [os.path.join(folder, file) for file in os.listdir(folder) if file.endswith('.wav')] | |
# Loading gradio interface with dropdown for audio selection | |
inputs = gr.inputs.Dropdown(audio_files, label="Select Audio File") | |
outputs = "text" | |
title = "Machine Learning Emotion Detection" | |
description = "Gradio demo for Emotion Detection. To use it, select an audio file from the dropdown and click 'Submit'. Read more at the links below." | |
gr.Interface(predict_emotion, inputs, outputs, title=title, description=description).launch() |