Spaces:
Runtime error
Runtime error
from speechbrain.pretrained.interfaces import foreign_class | |
import warnings | |
warnings.filterwarnings("ignore") | |
import os | |
import gradio as gr | |
# Путь к каталогу с предзаписанными аудиофайлами | |
prerecorded_audio_path = 'prerecordered' | |
# Список файлов в каталоге prerecorded | |
prerecorded_audio_files = os.listdir(prerecorded_audio_path) | |
# Полные пути к файлам для Dropdown | |
prerecorded_audio_files_full_path = [os.path.join(prerecorded_audio_path, file) for file in prerecorded_audio_files] | |
# Loading the speechbrain emotion detection model | |
learner = foreign_class( | |
source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP", | |
pymodule_file="custom_interface.py", | |
classname="CustomEncoderWav2vec2Classifier" | |
) | |
# Building prediction function for gradio | |
emotion_dict = { | |
'sad': 'Sad', | |
'hap': 'Happy', | |
'ang': 'Anger', | |
'fea': 'Fear', | |
'sur': 'Surprised', | |
'neu': 'Neutral' | |
} | |
def predict_emotion(uploaded_audio=None, prerecorded_audio=None): | |
# Если выбран аудиофайл из выпадающего списка, использовать его | |
if prerecorded_audio is not None: | |
audio_file_path = prerecorded_audio | |
elif uploaded_audio is not None: | |
# Иначе, если загружен файл, использовать его | |
audio_file_path = uploaded_audio.name | |
else: | |
# Если нет файла, вернуть сообщение об ошибке | |
return "No audio file provided", 0 | |
out_prob, score, index, text_lab = learner.classify_file(audio_file_path) | |
emotion_probability = out_prob[0][index[0]].item() | |
# Возвращаем словарь с эмоцией и вероятностью | |
return {"Emotion": emotion_dict[text_lab[0]], "Probability": f"{emotion_probability:.2f}"} | |
# Модифицированный Gradio interface | |
inputs = [ | |
gr.inputs.Dropdown(list(prerecorded_audio_files_full_path), label="Select Prerecorded Audio", default=None), | |
gr.inputs.Audio(label="Or Upload Audio", type="file", source="upload", optional=True), | |
gr.inputs.Audio(label="Or Record Audio", type="file", source="microphone", optional=True) | |
] | |
outputs = gr.outputs.Label(num_top_classes=2) | |
title = "ML Speech Emotion Detection" | |
description = "Detect emotions from speech using a Speechbrain powered model." | |
gr.Interface(fn=predict_emotion, inputs=inputs, outputs=outputs, title=title, description=description).launch() |