from speechbrain.pretrained.interfaces import foreign_class import warnings warnings.filterwarnings("ignore") import os import gradio as gr # Путь к каталогу с предзаписанными аудиофайлами prerecorded_audio_path = 'prerecorded' # Список файлов в каталоге prerecorded prerecorded_audio_files = os.listdir(prerecorded_audio_path) # Полные пути к файлам для Dropdown prerecorded_audio_files_full_path = [os.path.join(prerecorded_audio_path, file) for file in prerecorded_audio_files] # Loading the speechbrain emotion detection model learner = foreign_class( source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier" ) # Building prediction function for gradio emotion_dict = { 'sad': 'Sad', 'hap': 'Happy', 'ang': 'Anger', 'fea': 'Fear', 'sur': 'Surprised', 'neu': 'Neutral' } def predict_emotion(uploaded_audio=None, prerecorded_audio=None): # Если выбран аудиофайл из выпадающего списка, использовать его if prerecorded_audio is not None: audio_file_path = prerecorded_audio elif uploaded_audio is not None: # Иначе, если загружен файл, использовать его audio_file_path = uploaded_audio.name else: # Если нет файла, вернуть сообщение об ошибке return "No audio file provided", 0 out_prob, score, index, text_lab = learner.classify_file(audio_file_path) emotion_probability = out_prob[0][index[0]].item() # Возвращаем словарь с эмоцией и вероятностью return {"Emotion": emotion_dict[text_lab[0]], "Probability": f"{emotion_probability:.2f}"} # Модифицированный Gradio interface inputs = [ gr.inputs.Dropdown(list(prerecorded_audio_files_full_path), label="Select Prerecorded Audio", default=None), gr.inputs.Audio(label="Or Upload Audio", type="file", source="upload", optional=True), gr.inputs.Audio(label="Or Record Audio", type="file", source="microphone", optional=True) ] outputs = gr.outputs.Label(num_top_classes=2) title = "ML Speech Emotion Detection" description = "Detect emotions from speech using a Speechbrain powered model." gr.Interface(fn=predict_emotion, inputs=inputs, outputs=outputs, title=title, description=description).launch()