import os from speechbrain.pretrained.interfaces import foreign_class import gradio as gr import warnings warnings.filterwarnings("ignore") # Loading the speechbrain emotion detection model learner = foreign_class( source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP", pymodule_file="custom_interface.py", classname="CustomEncoderWav2vec2Classifier" ) # Building prediction function for gradio emotion_dict = { 'sad': 'Sad', 'hap': 'Happy', 'ang': 'Anger', 'fea': 'Fear', 'sur': 'Surprised', 'neu': 'Neutral' } def predict_emotion(file_path): # Since we get the file path from the dropdown, we don't need to access the `.name` property out_prob, score, index, text_lab = learner.classify_file(file_path) return emotion_dict[text_lab[0]] # Folder containing audio files folder = "prerecorded" # Assuming that the 'prerecorded' folder is in the current working directory # Change the working directory path if necessary audio_files = [os.path.join(folder, file) for file in os.listdir(folder) if file.endswith('.wav')] # Loading gradio interface with dropdown for audio selection inputs = gr.inputs.Dropdown(audio_files, label="Select Audio File") outputs = "text" title = "Machine Learning Emotion Detection" description = "Gradio demo for Emotion Detection. To use it, select an audio file from the dropdown and click 'Submit'. Read more at the links below." gr.Interface(predict_emotion, inputs, outputs, title=title, description=description).launch()