Spaces:
Running
Running
Commit
·
2204e85
1
Parent(s):
f942112
Update app.py
Browse files
app.py
CHANGED
@@ -92,7 +92,6 @@ def getBMFull(): return osuApi.getFull(request)
|
|
92 |
###############
|
93 |
# LOAD MODELS
|
94 |
sa_t, sa_m = AutoTokenizer.from_pretrained("cardiffnlp/twitter-xlm-roberta-base-sentiment"), AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-xlm-roberta-base-sentiment")
|
95 |
-
ld_t, ld_m = AutoTokenizer.from_pretrained("papluca/xlm-roberta-base-language-detection"), AutoModelForSequenceClassification.from_pretrained("papluca/xlm-roberta-base-language-detection")
|
96 |
|
97 |
##############
|
98 |
# ANALYZE DATA API
|
@@ -114,22 +113,6 @@ def sentimentAnalys():
|
|
114 |
return {"status": "pass", "predicted_sentiment": predicted_sentiment}
|
115 |
except Exception as e: return {"status": "error", "details": { "error_code": 123, "error_details": str(e).replace("\n", " | ") }}
|
116 |
|
117 |
-
@app.route('/analyzeText/api/v1/detectLang', methods=['GET', 'POST'])
|
118 |
-
def langDetect():
|
119 |
-
try:
|
120 |
-
text = request.form.get('text') or request.args.get('text') or request.values.get('text') or ""
|
121 |
-
if text == "": return {"status": "error", "details": { "error_code": 101, "error_details": "No text provided" }}
|
122 |
-
|
123 |
-
inputs = ld_t(text, return_tensors="pt")
|
124 |
-
|
125 |
-
outputs = ld_m(**inputs)
|
126 |
-
logits = outputs.logits
|
127 |
-
predicted_language_index = logits.argmax(dim=1).item()
|
128 |
-
predicted_language = ld_m.config.id2label[predicted_language_index]
|
129 |
-
|
130 |
-
return {"status": "pass", "predicted_language": predicted_language}
|
131 |
-
except Exception as e: return {"status": "error", "details": { "error_code": 123, "error_details": str(e).replace("\n", " | ") }}
|
132 |
-
|
133 |
if __name__ == "__main__":
|
134 |
config = configFile()
|
135 |
with open(config['config-path'], "w") as outfile:
|
|
|
92 |
###############
|
93 |
# LOAD MODELS
|
94 |
sa_t, sa_m = AutoTokenizer.from_pretrained("cardiffnlp/twitter-xlm-roberta-base-sentiment"), AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-xlm-roberta-base-sentiment")
|
|
|
95 |
|
96 |
##############
|
97 |
# ANALYZE DATA API
|
|
|
113 |
return {"status": "pass", "predicted_sentiment": predicted_sentiment}
|
114 |
except Exception as e: return {"status": "error", "details": { "error_code": 123, "error_details": str(e).replace("\n", " | ") }}
|
115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
if __name__ == "__main__":
|
117 |
config = configFile()
|
118 |
with open(config['config-path'], "w") as outfile:
|