invoices / app.py
Ankur Goyal
Properly cache pipeline and display
8171e8e
raw
history blame
1.5 kB
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
print("Importing")
import streamlit as st
import torch
from docquery.pipeline import get_pipeline
from docquery.document import load_bytes
def ensure_list(x):
if isinstance(x, list):
return x
else:
return [x]
@st.experimental_singleton
def construct_pipeline():
device = "cuda" if torch.cuda.is_available() else "cpu"
ret = get_pipeline(device=device)
return ret
@st.cache
def run_pipeline(question, document):
return construct_pipeline()(question=question, **document.context)
st.title("DocQuery: Query Documents Using NLP")
file = st.file_uploader("Upload a PDF or Image document")
question = st.text_input("QUESTION", "")
if file is not None:
col1, col2 = st.columns(2)
document = load_bytes(file, file.name)
col1.image(document.preview, use_column_width=True)
if file is not None and question is not None and len(question) > 0:
predictions = run_pipeline(question=question, document=document)
col2.header("Answers")
for p in ensure_list(predictions):
col2.subheader(f"{ p['answer'] }: ({round(p['score'] * 100, 1)}%)")
"DocQuery uses LayoutLMv1 fine-tuned on DocVQA, a document visual question answering dataset, as well as SQuAD, which boosts its English-language comprehension. To use it, simply upload an image or PDF, type a question, and click 'submit', or click one of the examples to load them."
"[Github Repo](https://github.com/impira/docquery)"