Spaces:
Build error
Build error
import os | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
print("Importing") | |
import streamlit as st | |
import torch | |
from docquery.pipeline import get_pipeline | |
from docquery.document import load_bytes | |
def ensure_list(x): | |
if isinstance(x, list): | |
return x | |
else: | |
return [x] | |
def construct_pipeline(): | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
ret = get_pipeline(device=device) | |
return ret | |
def run_pipeline(question, document): | |
return construct_pipeline()(question=question, **document.context) | |
st.title("DocQuery: Query Documents Using NLP") | |
file = st.file_uploader("Upload a PDF or Image document") | |
question = st.text_input("QUESTION", "") | |
if file is not None: | |
col1, col2 = st.columns(2) | |
document = load_bytes(file, file.name) | |
col1.image(document.preview, use_column_width=True) | |
if file is not None and question is not None and len(question) > 0: | |
predictions = run_pipeline(question=question, document=document) | |
col2.header("Answers") | |
for p in ensure_list(predictions): | |
col2.subheader(f"{ p['answer'] }: ({round(p['score'] * 100, 1)}%)") | |
"DocQuery uses LayoutLMv1 fine-tuned on DocVQA, a document visual question answering dataset, as well as SQuAD, which boosts its English-language comprehension. To use it, simply upload an image or PDF, type a question, and click 'submit', or click one of the examples to load them." | |
"[Github Repo](https://github.com/impira/docquery)" | |