import os os.environ["TOKENIZERS_PARALLELISM"] = "false" import functools from PIL import Image, ImageDraw import gradio as gr import torch from docquery.pipeline import get_pipeline from docquery.document import load_bytes, load_document, ImageDocument def ensure_list(x): if isinstance(x, list): return x else: return [x] CHECKPOINTS = { "LayoutLMv1 🦉": "impira/layoutlm-document-qa", "Donut 🍩": "naver-clova-ix/donut-base-finetuned-docvqa", } PIPELINES = {} def construct_pipeline(model): global PIPELINES if model in PIPELINES: return PIPELINES[model] device = "cuda" if torch.cuda.is_available() else "cpu" ret = get_pipeline(checkpoint=CHECKPOINTS[model], device=device) PIPELINES[model] = ret return ret @functools.lru_cache(1024) def run_pipeline(model, question, document, top_k): pipeline = construct_pipeline(model) return pipeline(question=question, **document.context, top_k=top_k) # TODO: Move into docquery # TODO: Support words past the first page (or window?) def lift_word_boxes(document, page): return document.context["image"][page][1] def expand_bbox(word_boxes): if len(word_boxes) == 0: return None min_x, min_y, max_x, max_y = zip(*[x[1] for x in word_boxes]) min_x, min_y, max_x, max_y = [min(min_x), min(min_y), max(max_x), max(max_y)] return [min_x, min_y, max_x, max_y] # LayoutLM boxes are normalized to 0, 1000 def normalize_bbox(box, width, height, padding=0.005): min_x, min_y, max_x, max_y = [c / 1000 for c in box] if padding != 0: min_x = max(0, min_x - padding) min_y = max(0, min_y - padding) max_x = min(max_x + padding, 1) max_y = min(max_y + padding, 1) return [min_x * width, min_y * height, max_x * width, max_y * height] examples = [ [ "invoice.png", "What is the invoice number?", ], [ "contract.jpeg", "What is the purchase amount?", ], [ "statement.png", "What are net sales for 2020?", ], ] def process_path(path): if path: try: document = load_document(path) return ( document, gr.update(visible=True, value=document.preview), gr.update(visible=True), gr.update(visible=False, value=None), ) except Exception: pass return ( None, gr.update(visible=False, value=None), gr.update(visible=False), gr.update(visible=False, value=None), ) def process_upload(file): if file: return process_path(file.name) else: return ( None, gr.update(visible=False, value=None), gr.update(visible=False), gr.update(visible=False, value=None), ) colors = ["#64A087", "green", "black"] def process_question(question, document, model=list(CHECKPOINTS.keys())[0]): if document is None: return None, None predictions = run_pipeline(model, question, document, 3) pages = [x.copy() for x in document.preview] for i, p in enumerate(ensure_list(predictions)): if i > 0: # Keep the code around to produce multiple boxes, but only show the top # prediction for now break if "start" in p and "end" in p: image = pages[p["page"]] draw = ImageDraw.Draw(image, "RGBA") x1, y1, x2, y2 = normalize_bbox( expand_bbox( lift_word_boxes(document, p["page"])[p["start"] : p["end"] + 1] ), image.width, image.height, ) draw.rectangle(((x1, y1), (x2, y2)), fill=(0, 255, 0, int(0.4 * 255))) return gr.update(visible=True, value=pages), gr.update( visible=True, value=predictions ) def load_example_document(img, question, model): if img is not None: print(f"LOADING EXAMPLE {question}") document = ImageDocument(Image.fromarray(img)) preview, answer = process_question(question, document, model) return document, question, preview, gr.update(visible=True), answer else: return None, None, None, gr.update(visible=False), None CSS = """ #question input { font-size: 16px; } #url-textbox { padding: 0 !important; } #short-upload-box .w-full { min-height: 10rem !important; } /* I think something like this can be used to re-shape * the table */ /* .gr-samples-table tr { display: inline; } .gr-samples-table .p-2 { width: 100px; } */ #select-a-file { width: 100%; } #file-clear { padding-top: 2px !important; padding-bottom: 2px !important; padding-left: 8px !important; padding-right: 8px !important; } .gradio-container.light .gr-button-primary { background: linear-gradient(180deg, #CDF9BE 0%, #AFF497 100%); border: 1px solid #B0DCCC; border-radius: 8px; color: #1B8700; } .gradio-container.dark button#submit-button { background: linear-gradient(180deg, #CDF9BE 0%, #AFF497 100%); border: 1px solid #B0DCCC; border-radius: 8px; color: #1B8700 } """ with gr.Blocks(css=CSS) as demo: gr.Markdown("# DocQuery: Query Documents w/ NLP") gr.Markdown( "DocQuery uses LayoutLMv1 fine-tuned on DocVQA, a document visual question" " answering dataset, as well as SQuAD, which boosts its English-language comprehension." " To use it, simply upload an image or PDF, type a question, and click 'submit', or " " click one of the examples to load them." " [Github Repo](https://github.com/impira/docquery)" ) document = gr.Variable() example_question = gr.Textbox(visible=False) example_image = gr.Image(visible=False) with gr.Row(equal_height=True): with gr.Column(): with gr.Row(): gr.Markdown("## 1. Select a file", elem_id="select-a-file") img_clear_button = gr.Button( "Clear", variant="secondary", elem_id="file-clear", visible=False ) image = gr.Gallery(visible=False) with gr.Row(equal_height=True): url = gr.Textbox( show_label=False, placeholder="URL", lines=1, max_lines=1, elem_id="url-textbox", ) submit = gr.Button("Get") gr.Markdown("— or —") upload = gr.File( label=" - or -", interactive=True, elem_id="short-upload-box" ) gr.Examples( examples=examples, inputs=[example_image, example_question], ) with gr.Column() as col: gr.Markdown("## 2. Ask a question") question = gr.Textbox( label="Question", placeholder="e.g. What is the invoice number?", lines=1, max_lines=1, ) model = gr.Radio( choices=list(CHECKPOINTS.keys()), value=list(CHECKPOINTS.keys())[0], label="Model", ) with gr.Row(): clear_button = gr.Button("Clear", variant="secondary") submit_button = gr.Button( "Submit", variant="primary", elem_id="submit-button" ) with gr.Column(): output = gr.JSON(label="Output", visible=False) img_clear_button.click( lambda _: ( gr.update(visible=False, value=None), None, gr.update(visible=False, value=None), gr.update(visible=False), None, ), inputs=img_clear_button, outputs=[image, document, output, img_clear_button, example_image], ) clear_button.click( lambda _: ( gr.update(visible=False, value=None), None, None, gr.update(visible=False, value=None), None, ), inputs=clear_button, outputs=[image, document, question, output, example_image], ) upload.change(fn=process_upload, inputs=[upload], outputs=[document, image, img_clear_button, output]) url.change(fn=process_path, inputs=[url], outputs=[document, image, img_clear_button, output]) question.submit( fn=process_question, inputs=[question, document, model], outputs=[image, output], ) submit_button.click( process_question, inputs=[question, document, model], outputs=[image, output], ) model.change( process_question, inputs=[question, document, model], outputs=[image, output] ) example_image.change( fn=load_example_document, inputs=[example_image, example_question, model], outputs=[document, question, image, img_clear_button, output], ) if __name__ == "__main__": demo.launch(debug=True, share=True)