Spaces:
Running
Running
Commit
·
52b0385
1
Parent(s):
d27e2cd
Update app.py
Browse files
app.py
CHANGED
@@ -1,54 +1,125 @@
|
|
1 |
-
|
2 |
-
import
|
3 |
-
import
|
|
|
|
|
|
|
4 |
import numpy as np
|
5 |
-
from
|
6 |
-
from textblob import TextBlob
|
7 |
|
8 |
-
# Initialize the Flask application
|
9 |
app = Flask(__name__)
|
|
|
10 |
|
11 |
-
|
12 |
-
@app.route('/')
|
13 |
def index():
|
14 |
-
return render_template(
|
15 |
|
16 |
-
|
17 |
-
@app.route('/paraphrase', methods=['POST'])
|
18 |
def paraphrase():
|
19 |
-
|
20 |
-
|
21 |
|
22 |
-
#
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
#
|
26 |
-
|
|
|
27 |
|
28 |
-
#
|
29 |
-
|
|
|
|
|
30 |
|
31 |
-
#
|
32 |
-
|
|
|
|
|
33 |
|
34 |
-
#
|
35 |
-
|
36 |
|
37 |
-
#
|
38 |
-
|
|
|
|
|
39 |
|
40 |
-
#
|
41 |
-
emotion =
|
42 |
-
|
43 |
-
emotion = "Positive"
|
44 |
-
elif sentiment.polarity > 0 and sentiment.polarity < 0.5:
|
45 |
-
emotion = "Neutral"
|
46 |
-
else:
|
47 |
-
emotion = "Negative"
|
48 |
|
49 |
-
|
50 |
-
return render_template('results.html', paraphrased_text=summarized_text, pos_tagged_text=pos_tagged_text, ner_tagged_text=ner_tagged_text, sentiment=sentiment, emotion=emotion)
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, render_template, request
|
2 |
+
from nltk.tokenize import word_tokenize
|
3 |
+
from nltk.corpus import wordnet
|
4 |
+
from nltk import pos_tag, ne_chunk
|
5 |
+
import textblob
|
6 |
+
from polyglot.detect import Detector
|
7 |
import numpy as np
|
8 |
+
from keras.models import load_model
|
|
|
9 |
|
|
|
10 |
app = Flask(__name__)
|
11 |
+
model = load_model("emotion_detector.h5")
|
12 |
|
13 |
+
@app.route("/")
|
|
|
14 |
def index():
|
15 |
+
return render_template("index.html")
|
16 |
|
17 |
+
@app.route("/paraphrase", methods=["POST"])
|
|
|
18 |
def paraphrase():
|
19 |
+
input_text = request.form["input_text"]
|
20 |
+
options = request.form.getlist("options")
|
21 |
|
22 |
+
# Remove special characters
|
23 |
+
if "remove_special_characters" in options:
|
24 |
+
input_text = remove_special_characters(input_text)
|
25 |
+
|
26 |
+
# Correct grammar
|
27 |
+
if "correct_grammar" in options:
|
28 |
+
input_text = correct_grammar(input_text)
|
29 |
|
30 |
+
# Summarize text
|
31 |
+
if "summarize_text" in options:
|
32 |
+
input_text = summarize_text(input_text)
|
33 |
|
34 |
+
# Multilingual support
|
35 |
+
target_language = request.form.get("target_language")
|
36 |
+
if target_language:
|
37 |
+
input_text = translate(input_text, target_language)
|
38 |
|
39 |
+
# Custom synonyms
|
40 |
+
custom_synonyms = request.form.getlist("custom_synonyms")
|
41 |
+
for word, synonym in custom_synonyms:
|
42 |
+
input_text = replace_word(input_text, word, synonym)
|
43 |
|
44 |
+
# Output customization
|
45 |
+
input_text = customise_output(input_text, options)
|
46 |
|
47 |
+
# Integration with other NLP tools
|
48 |
+
named_entities = get_named_entities(input_text)
|
49 |
+
part_of_speech = get_part_of_speech(input_text)
|
50 |
+
sentiment = get_sentiment(input_text)
|
51 |
|
52 |
+
# Emotion detector
|
53 |
+
emotion = detect_emotion(input_text)
|
54 |
+
input_text = adjust_tone(input_text, emotion)
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
return render_template("index.html", paraphrased_text=input_text, named_entities=named_entities, part_of_speech=part_of_speech, sentiment=sentiment)
|
|
|
57 |
|
58 |
+
def remove_special_characters(input_text):
|
59 |
+
# Code to remove special characters
|
60 |
+
return input_text
|
61 |
+
|
62 |
+
def summarize_text(input_text):
|
63 |
+
# Code to summarize the text
|
64 |
+
return input_text
|
65 |
+
|
66 |
+
def detect_language(input_text):
|
67 |
+
detector = Detector(input_text)
|
68 |
+
language = detector.language.code
|
69 |
+
return language
|
70 |
+
|
71 |
+
def translate(input_text, target_language):
|
72 |
+
blob = textblob.TextBlob(input_text)
|
73 |
+
translated_text = blob.translate(to=target_language)
|
74 |
+
return translated_text
|
75 |
+
|
76 |
+
def get_synonyms(word):
|
77 |
+
synonyms = []
|
78 |
+
for syn in wordnet.synsets(word):
|
79 |
+
for lemma in syn.lemmas():
|
80 |
+
synonyms.append(lemma.name())
|
81 |
+
return synonyms
|
82 |
+
|
83 |
+
def replace_word(input_text, word, synonym):
|
84 |
+
words = word_tokenize(input_text)
|
85 |
+
words = [synonym if w == word else w for w in words]
|
86 |
+
input_text = " ".join(words)
|
87 |
+
return input_text
|
88 |
+
|
89 |
+
def customise_output(input_text, options):
|
90 |
+
# Code to customise output based on options
|
91 |
+
return input_text
|
92 |
+
|
93 |
+
def get_named_entities(input_text):
|
94 |
+
named_entities = ne_chunk(pos_tag(word_tokenize(input_text)))
|
95 |
+
return named_entities
|
96 |
+
|
97 |
+
def get_part_of_speech(input_text):
|
98 |
+
pos = pos_tag(word_tokenize(input_text))
|
99 |
+
return pos
|
100 |
+
|
101 |
+
def get_sentiment(input_text):
|
102 |
+
blob = textblob.TextBlob(input_text)
|
103 |
+
sentiment = blob.sentiment.polarity
|
104 |
+
return sentiment
|
105 |
+
|
106 |
+
def correct_grammar(input_text):
|
107 |
+
blob = textblob.TextBlob(input_text)
|
108 |
+
corrected_text = str(blob.correct())
|
109 |
+
return corrected_text
|
110 |
+
|
111 |
+
def detect_emotion(input_text):
|
112 |
+
words = word_tokenize(input_text)
|
113 |
+
words = [w.lower() for w in words]
|
114 |
+
words = [w for w in words if w.isalpha()]
|
115 |
+
input_text = " ".join(words)
|
116 |
+
input_text = np.array([input_text])
|
117 |
+
sentiment = model.predict(input_text, batch_size=1, verbose=0)[0]
|
118 |
+
return sentiment
|
119 |
+
|
120 |
+
def adjust_tone(input_text, emotion):
|
121 |
+
# Code to adjust tone based on emotion
|
122 |
+
return input_text
|
123 |
+
|
124 |
+
if __name__ == "__main__":
|
125 |
+
app.run(debug=True,port=7860,host="0.0.0.0")
|