imseldrith's picture
Create new file
7066d5f
import gradio as gr
import torch
from transformers import PegasusForConditionalGeneration, PegasusTokenizer
from sentence_splitter import SentenceSplitter, split_text_into_sentences
model_name = 'tuner007/pegasus_paraphrase'
torch_device = 'cuda' if torch.cuda.is_available() else 'cpu'
tokenizer = PegasusTokenizer.from_pretrained(model_name)
model = PegasusForConditionalGeneration.from_pretrained(model_name).to(torch_device)
def get_response(input_text, num_return_sequences):
batch = tokenizer.prepare_seq2seq_batch([input_text], truncation=True, padding='longest', max_length=10000,
return_tensors="pt").to(torch_device)
translated = model.generate(**batch, num_beams=10, num_return_sequences=num_return_sequences,
temperature=1.5)
tgt_text = tokenizer.batch_decode(translated, skip_special_tokens=True)
return tgt_text
def get_response_from_text(
context="I am a student at the University of Washington. I am taking a course called Data Science."):
splitter = SentenceSplitter(language='en')
sentence_list = splitter.split(context)
paraphrase = []
for i in sentence_list:
a = get_response(i, 1)
paraphrase.append(a)
paraphrase2 = [' '.join(x) for x in paraphrase]
paraphrase3 = [' '.join(x for x in paraphrase2)]
paraphrased_text = str(paraphrase3).strip('[]').strip("'")
return paraphrased_text
def greet(context):
return get_response_from_text(context)
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
iface.launch()