Spaces:
Runtime error
Runtime error
import torch | |
import os | |
import random | |
import numpy as np | |
import ipdb | |
import torch.nn.functional as F | |
def seed_everything(seed): | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed(seed) | |
random.seed(seed) | |
np.random.seed(seed) | |
def register_time(model, t): | |
conv_module = model.unet.up_blocks[1].resnets[1] | |
setattr(conv_module, 't', t) | |
down_res_dict = {0: [0, 1], 1: [0, 1], 2: [0, 1]} | |
up_res_dict = {1: [0, 1, 2], 2: [0, 1, 2], 3: [0, 1, 2]} | |
for res in up_res_dict: | |
for block in up_res_dict[res]: | |
module = model.unet.up_blocks[res].attentions[block].transformer_blocks[0].attn1 | |
setattr(module, 't', t) | |
for res in down_res_dict: | |
for block in down_res_dict[res]: | |
module = model.unet.down_blocks[res].attentions[block].transformer_blocks[0].attn1 | |
setattr(module, 't', t) | |
module = model.unet.mid_block.attentions[0].transformer_blocks[0].attn1 | |
setattr(module, 't', t) | |
def load_source_latents_t(t, latents_path): | |
latents_t_path = os.path.join(latents_path, f'noisy_latents_{t}.pt') | |
assert os.path.exists(latents_t_path), f'Missing latents at t {t} path {latents_t_path}' | |
latents = torch.load(latents_t_path) | |
return latents | |
def register_attention_control_efficient(model, injection_schedule): | |
def sa_forward(self): | |
to_out = self.to_out | |
if type(to_out) is torch.nn.modules.container.ModuleList: | |
to_out = self.to_out[0] | |
else: | |
to_out = self.to_out | |
def forward(x, encoder_hidden_states=None, attention_mask=None): | |
batch_size, sequence_length, dim = x.shape | |
h = self.heads | |
is_cross = encoder_hidden_states is not None | |
encoder_hidden_states = encoder_hidden_states if is_cross else x | |
if not is_cross and self.injection_schedule is not None and ( | |
self.t in self.injection_schedule or self.t == 1000): | |
q = self.to_q(x) | |
k = self.to_k(encoder_hidden_states) | |
source_batch_size = int(q.shape[0] // 3) | |
# inject unconditional | |
q[source_batch_size:2 * source_batch_size] = q[:source_batch_size] | |
k[source_batch_size:2 * source_batch_size] = k[:source_batch_size] | |
# inject conditional | |
q[2 * source_batch_size:] = q[:source_batch_size] | |
k[2 * source_batch_size:] = k[:source_batch_size] | |
q = self.head_to_batch_dim(q) | |
k = self.head_to_batch_dim(k) | |
else: | |
q = self.to_q(x) | |
k = self.to_k(encoder_hidden_states) | |
q = self.head_to_batch_dim(q) | |
k = self.head_to_batch_dim(k) | |
v = self.to_v(encoder_hidden_states) | |
v = self.head_to_batch_dim(v) | |
sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale | |
if attention_mask is not None: | |
attention_mask = attention_mask.reshape(batch_size, -1) | |
max_neg_value = -torch.finfo(sim.dtype).max | |
attention_mask = attention_mask[:, None, :].repeat(h, 1, 1) | |
sim.masked_fill_(~attention_mask, max_neg_value) | |
# attention, what we cannot get enough of | |
attn = sim.softmax(dim=-1) | |
out = torch.einsum("b i j, b j d -> b i d", attn, v) | |
out = self.batch_to_head_dim(out) | |
return to_out(out) | |
return forward | |
res_dict = {1: [1, 2], 2: [0, 1, 2], 3: [0, 1, 2]} # we are injecting attention in blocks 4 - 11 of the decoder, so not in the first block of the lowest resolution | |
for res in res_dict: | |
for block in res_dict[res]: | |
module = model.unet.up_blocks[res].attentions[block].transformer_blocks[0].attn1 | |
module.forward = sa_forward(module) | |
setattr(module, 'injection_schedule', injection_schedule) | |
def register_attention_control_efficient_kv(model, injection_schedule): | |
def sa_forward(self): | |
to_out = self.to_out | |
if type(to_out) is torch.nn.modules.container.ModuleList: | |
to_out = self.to_out[0] | |
else: | |
to_out = self.to_out | |
def forward(x, encoder_hidden_states=None, attention_mask=None): | |
batch_size, sequence_length, dim = x.shape | |
h = self.heads | |
# if encoder_hidden_states is None: | |
# ipdb.set_trace() | |
is_cross = encoder_hidden_states is not None | |
encoder_hidden_states = encoder_hidden_states if is_cross else x | |
q = self.to_q(x) | |
q = self.head_to_batch_dim(q) | |
if not is_cross and self.injection_schedule is not None and ( | |
self.t in self.injection_schedule or self.t == 1000): | |
# q = self.to_q(x) | |
k = self.to_k(encoder_hidden_states) | |
v = self.to_v(encoder_hidden_states) | |
source_batch_size = int(v.shape[0] // 3) | |
# inject unconditional | |
k[source_batch_size:2 * source_batch_size] = k[:source_batch_size] | |
v[source_batch_size:2 * source_batch_size] = v[:source_batch_size] | |
# inject conditional | |
k[2 * source_batch_size:] = k[:source_batch_size] | |
v[2 * source_batch_size:] = v[:source_batch_size] | |
# q = self.head_to_batch_dim(q) | |
k = self.head_to_batch_dim(k) | |
v = self.head_to_batch_dim(v) | |
else: | |
# q = self.to_q(x) | |
k = self.to_k(encoder_hidden_states) | |
# q = self.head_to_batch_dim(q) | |
k = self.head_to_batch_dim(k) | |
v = self.to_v(encoder_hidden_states) | |
v = self.head_to_batch_dim(v) | |
sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale | |
if attention_mask is not None: | |
attention_mask = attention_mask.reshape(batch_size, -1) | |
max_neg_value = -torch.finfo(sim.dtype).max | |
attention_mask = attention_mask[:, None, :].repeat(h, 1, 1) | |
sim.masked_fill_(~attention_mask, max_neg_value) | |
# attention, what we cannot get enough of | |
attn = sim.softmax(dim=-1) | |
out = torch.einsum("b i j, b j d -> b i d", attn, v) | |
out = self.batch_to_head_dim(out) | |
return to_out(out) | |
return forward | |
res_dict = {1: [1, 2], 2: [0, 1, 2], 3: [0, 1, 2]} # we are injecting attention in blocks 4 - 11 of the decoder, so not in the first block of the lowest resolution | |
for res in res_dict: | |
for block in res_dict[res]: | |
module = model.unet.up_blocks[res].attentions[block].transformer_blocks[0].attn1 | |
module.forward = sa_forward(module) | |
setattr(module, 'injection_schedule', injection_schedule) | |
def register_conv_control_efficient(model, injection_schedule): | |
def conv_forward(self): | |
def forward(input_tensor, temb): | |
hidden_states = input_tensor | |
hidden_states = self.norm1(hidden_states) | |
hidden_states = self.nonlinearity(hidden_states) | |
if self.upsample is not None: | |
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 | |
if hidden_states.shape[0] >= 64: | |
input_tensor = input_tensor.contiguous() | |
hidden_states = hidden_states.contiguous() | |
input_tensor = self.upsample(input_tensor) | |
hidden_states = self.upsample(hidden_states) | |
elif self.downsample is not None: | |
input_tensor = self.downsample(input_tensor) | |
hidden_states = self.downsample(hidden_states) | |
hidden_states = self.conv1(hidden_states) | |
if temb is not None: | |
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None] | |
if temb is not None and self.time_embedding_norm == "default": | |
hidden_states = hidden_states + temb | |
hidden_states = self.norm2(hidden_states) | |
if temb is not None and self.time_embedding_norm == "scale_shift": | |
scale, shift = torch.chunk(temb, 2, dim=1) | |
hidden_states = hidden_states * (1 + scale) + shift | |
hidden_states = self.nonlinearity(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.conv2(hidden_states) | |
if self.injection_schedule is not None and (self.t in self.injection_schedule or self.t == 1000): | |
source_batch_size = int(hidden_states.shape[0] // 3) | |
# inject unconditional | |
hidden_states[source_batch_size:2 * source_batch_size] = hidden_states[:source_batch_size] | |
# inject conditional | |
hidden_states[2 * source_batch_size:] = hidden_states[:source_batch_size] | |
if self.conv_shortcut is not None: | |
input_tensor = self.conv_shortcut(input_tensor) | |
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor | |
return output_tensor | |
return forward | |
conv_module = model.unet.up_blocks[1].resnets[1] | |
conv_module.forward = conv_forward(conv_module) | |
setattr(conv_module, 'injection_schedule', injection_schedule) | |
def register_attention_control_efficient_kv_2nd_to_1st(model, injection_schedule, mask=None): | |
def sa_forward(self): | |
to_out = self.to_out | |
if type(to_out) is torch.nn.modules.container.ModuleList: | |
to_out = self.to_out[0] | |
else: | |
to_out = self.to_out | |
def forward(x, mask=mask, encoder_hidden_states=None, attention_mask=None): | |
batch_size, sequence_length, dim = x.shape | |
h = self.heads | |
# if encoder_hidden_states is None: | |
# ipdb.set_trace() | |
is_cross = encoder_hidden_states is not None | |
encoder_hidden_states = encoder_hidden_states if is_cross else x | |
q = self.to_q(x) | |
q = self.head_to_batch_dim(q) | |
if not is_cross and self.injection_schedule is not None and ( | |
self.t in self.injection_schedule or self.t == 1000): | |
# q = self.to_q(x) | |
target_size = int(np.sqrt(encoder_hidden_states.shape[1])) | |
target_mask = F.interpolate(mask.unsqueeze(1),size=(target_size, target_size))[:,0,:,:] | |
target_mask = target_mask.view(target_mask.shape[0], -1).unsqueeze(-1) | |
k = self.to_k(encoder_hidden_states) # k: bx256x1280 | |
v = self.to_v(encoder_hidden_states) | |
source_batch_size = int(v.shape[0] // 2) | |
# inject | |
k[:source_batch_size] = k[source_batch_size:2 * source_batch_size] * (1-target_mask) + k[:source_batch_size] * target_mask | |
v[:source_batch_size] = v[source_batch_size:2 * source_batch_size] * (1-target_mask) + v[:source_batch_size] * target_mask | |
# q = self.head_to_batch_dim(q) | |
k = self.head_to_batch_dim(k) | |
v = self.head_to_batch_dim(v) | |
else: | |
# q = self.to_q(x) | |
k = self.to_k(encoder_hidden_states) | |
# q = self.head_to_batch_dim(q) | |
k = self.head_to_batch_dim(k) | |
v = self.to_v(encoder_hidden_states) | |
v = self.head_to_batch_dim(v) | |
sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale | |
if attention_mask is not None: | |
attention_mask = attention_mask.reshape(batch_size, -1) | |
max_neg_value = -torch.finfo(sim.dtype).max | |
attention_mask = attention_mask[:, None, :].repeat(h, 1, 1) | |
sim.masked_fill_(~attention_mask, max_neg_value) | |
# attention, what we cannot get enough of | |
attn = sim.softmax(dim=-1) | |
out = torch.einsum("b i j, b j d -> b i d", attn, v) | |
out = self.batch_to_head_dim(out) | |
return to_out(out) | |
return forward | |
# res_dict = {1: [1, 2], 2: [0, 1, 2], 3: [0, 1, 2]} # we are injecting attention in blocks 4 - 11 of the decoder, so not in the first block of the lowest resolution | |
res_dict = {1: [1, 2], 2: [0, 1, 2]} # we are injecting attention in blocks 4 - 11 of the decoder, so not in the first block of the lowest resolution | |
for res in res_dict: | |
for block in res_dict[res]: | |
module = model.unet.up_blocks[res].attentions[block].transformer_blocks[0].attn1 | |
module.forward = sa_forward(module) | |
setattr(module, 'injection_schedule', injection_schedule) | |
def register_conv_control_efficient_2nd_to_1st(model, injection_schedule, mask=None): | |
def conv_forward(self): | |
def forward(input_tensor, temb): | |
hidden_states = input_tensor | |
hidden_states = self.norm1(hidden_states) | |
hidden_states = self.nonlinearity(hidden_states) | |
if self.upsample is not None: | |
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 | |
if hidden_states.shape[0] >= 64: | |
input_tensor = input_tensor.contiguous() | |
hidden_states = hidden_states.contiguous() | |
input_tensor = self.upsample(input_tensor) | |
hidden_states = self.upsample(hidden_states) | |
elif self.downsample is not None: | |
input_tensor = self.downsample(input_tensor) | |
hidden_states = self.downsample(hidden_states) | |
hidden_states = self.conv1(hidden_states) | |
if temb is not None: | |
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None] | |
if temb is not None and self.time_embedding_norm == "default": | |
hidden_states = hidden_states + temb | |
hidden_states = self.norm2(hidden_states) | |
if temb is not None and self.time_embedding_norm == "scale_shift": | |
scale, shift = torch.chunk(temb, 2, dim=1) | |
hidden_states = hidden_states * (1 + scale) + shift | |
hidden_states = self.nonlinearity(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.conv2(hidden_states) | |
if self.injection_schedule is not None and (self.t in self.injection_schedule or self.t == 1000): | |
source_batch_size = int(hidden_states.shape[0] // 2) | |
# inject unconditional | |
# hidden_states[source_batch_size:2 * source_batch_size] = hidden_states[:source_batch_size] | |
# inject conditional | |
target_size = int(np.sqrt(hidden_states.shape[-1])) | |
target_mask = F.interpolate(mask.unsqueeze(1),size=(target_size, target_size))[:,0,:,:] | |
target_mask = target_mask.view(target_mask.shape[0], -1).unsqueeze(-1) | |
hidden_states[:source_batch_size] = hidden_states[source_batch_size:] * (1-target_mask) + hidden_states[:source_batch_size] * target_mask | |
if self.conv_shortcut is not None: | |
input_tensor = self.conv_shortcut(input_tensor) | |
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor | |
return output_tensor | |
return forward | |
conv_module = model.unet.up_blocks[1].resnets[1] | |
conv_module.forward = conv_forward(conv_module) | |
setattr(conv_module, 'injection_schedule', injection_schedule) | |
def register_attention_control_efficient_qk_w_mask(model, injection_schedule, mask): | |
def sa_forward(self): | |
to_out = self.to_out | |
if type(to_out) is torch.nn.modules.container.ModuleList: | |
to_out = self.to_out[0] | |
else: | |
to_out = self.to_out | |
def forward(x, encoder_hidden_states=None, attention_mask=None): | |
batch_size, sequence_length, dim = x.shape | |
h = self.heads | |
is_cross = encoder_hidden_states is not None | |
encoder_hidden_states = encoder_hidden_states if is_cross else x | |
if not is_cross and self.injection_schedule is not None and ( | |
self.t in self.injection_schedule or self.t == 1000): | |
q = self.to_q(x) | |
k = self.to_k(encoder_hidden_states) | |
target_size = int(np.sqrt(encoder_hidden_states.shape[1])) | |
target_mask = F.interpolate(mask.unsqueeze(1),size=(target_size, target_size))[:,0,:,:] | |
target_mask = target_mask.view(target_mask.shape[0], -1).unsqueeze(-1) | |
source_batch_size = int(q.shape[0] // 3) | |
# inject unconditional | |
q[source_batch_size:2 * source_batch_size] = q[:source_batch_size] * target_mask + q[source_batch_size:2 * source_batch_size] * (1 - target_mask) | |
k[source_batch_size:2 * source_batch_size] = k[:source_batch_size] * target_mask + k[source_batch_size:2 * source_batch_size] * (1 - target_mask) | |
# inject conditional | |
q[2 * source_batch_size:] = q[:source_batch_size] * target_mask + q[2 * source_batch_size:] * (1 - target_mask) | |
k[2 * source_batch_size:] = k[:source_batch_size] * target_mask + k[2 * source_batch_size:] * (1 - target_mask) | |
q = self.head_to_batch_dim(q) | |
k = self.head_to_batch_dim(k) | |
else: | |
q = self.to_q(x) | |
k = self.to_k(encoder_hidden_states) | |
q = self.head_to_batch_dim(q) | |
k = self.head_to_batch_dim(k) | |
v = self.to_v(encoder_hidden_states) | |
v = self.head_to_batch_dim(v) | |
sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale | |
if attention_mask is not None: | |
attention_mask = attention_mask.reshape(batch_size, -1) | |
max_neg_value = -torch.finfo(sim.dtype).max | |
attention_mask = attention_mask[:, None, :].repeat(h, 1, 1) | |
sim.masked_fill_(~attention_mask, max_neg_value) | |
# attention, what we cannot get enough of | |
attn = sim.softmax(dim=-1) | |
out = torch.einsum("b i j, b j d -> b i d", attn, v) | |
out = self.batch_to_head_dim(out) | |
return to_out(out) | |
return forward | |
res_dict = {1: [1, 2], 2: [0, 1, 2], 3: [0, 1, 2]} # we are injecting attention in blocks 4 - 11 of the decoder, so not in the first block of the lowest resolution | |
for res in res_dict: | |
for block in res_dict[res]: | |
module = model.unet.up_blocks[res].attentions[block].transformer_blocks[0].attn1 | |
module.forward = sa_forward(module) | |
setattr(module, 'injection_schedule', injection_schedule) | |
def register_attention_control_efficient_kv_w_mask(model, injection_schedule, mask, do_classifier_free_guidance): | |
def sa_forward(self): | |
to_out = self.to_out | |
if type(to_out) is torch.nn.modules.container.ModuleList: | |
to_out = self.to_out[0] | |
else: | |
to_out = self.to_out | |
def forward(x, encoder_hidden_states=None, attention_mask=None): | |
batch_size, sequence_length, dim = x.shape | |
h = self.heads | |
is_cross = encoder_hidden_states is not None | |
encoder_hidden_states = encoder_hidden_states if is_cross else x | |
q = self.to_q(x) | |
q = self.head_to_batch_dim(q) | |
if not is_cross and self.injection_schedule is not None and ( | |
self.t in self.injection_schedule or self.t == 1000): | |
# if False: | |
k = self.to_k(encoder_hidden_states) # k: bx256x1280 | |
v = self.to_v(encoder_hidden_states) | |
target_size = int(np.sqrt(encoder_hidden_states.shape[1])) | |
target_mask = F.interpolate(mask.unsqueeze(1),size=(target_size, target_size))[:,0,:,:] | |
target_mask = target_mask.view(target_mask.shape[0], -1).unsqueeze(-1) | |
source_batch_size = int(v.shape[0] // 3) | |
if do_classifier_free_guidance: | |
# inject unconditional | |
v[source_batch_size:2 * source_batch_size] = v[:source_batch_size] * target_mask + v[source_batch_size:2 * source_batch_size] * (1 - target_mask) | |
k[source_batch_size:2 * source_batch_size] = k[:source_batch_size] * target_mask + k[source_batch_size:2 * source_batch_size] * (1 - target_mask) | |
# inject conditional | |
v[2 * source_batch_size:] = v[:source_batch_size] * target_mask + v[2 * source_batch_size:] * (1 - target_mask) | |
k[2 * source_batch_size:] = k[:source_batch_size] * target_mask + k[2 * source_batch_size:] * (1 - target_mask) | |
else: | |
v[source_batch_size:2 * source_batch_size] = v[:source_batch_size] * target_mask + v[source_batch_size:2 * source_batch_size] * (1 - target_mask) | |
k[source_batch_size:2 * source_batch_size] = k[:source_batch_size] * target_mask + k[source_batch_size:2 * source_batch_size] * (1 - target_mask) | |
k = self.head_to_batch_dim(k) | |
v = self.head_to_batch_dim(v) | |
else: | |
# q = self.to_q(x) | |
k = self.to_k(encoder_hidden_states) | |
# q = self.head_to_batch_dim(q) | |
k = self.head_to_batch_dim(k) | |
v = self.to_v(encoder_hidden_states) | |
v = self.head_to_batch_dim(v) | |
sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale | |
if attention_mask is not None: | |
attention_mask = attention_mask.reshape(batch_size, -1) | |
max_neg_value = -torch.finfo(sim.dtype).max | |
attention_mask = attention_mask[:, None, :].repeat(h, 1, 1) | |
sim.masked_fill_(~attention_mask, max_neg_value) | |
# attention, what we cannot get enough of | |
attn = sim.softmax(dim=-1) | |
out = torch.einsum("b i j, b j d -> b i d", attn, v) | |
out = self.batch_to_head_dim(out) | |
return to_out(out) | |
return forward | |
res_dict = {1: [0, 1, 2], 2: [0, 1, 2], 3: [0, 1, 2]} # we are injecting attention in blocks 4 - 11 of the decoder, so not in the first block of the lowest resolution | |
# res_dict = {1: [2], 2: [2], 3: [2]} # we are injecting attention in blocks 4 - 11 of the decoder, so not in the first block of the lowest resolution | |
for res in res_dict: | |
for block in res_dict[res]: | |
module = model.unet.up_blocks[res].attentions[block].transformer_blocks[0].attn1 | |
module.forward = sa_forward(module) | |
setattr(module, 'injection_schedule', injection_schedule) | |
# down_res_dict = {0: [0, 1], 1: [0, 1], 2: [0, 1]} | |
# for res in down_res_dict: | |
# for block in down_res_dict[res]: | |
# module = model.unet.down_blocks[res].attentions[block].transformer_blocks[0].attn1 | |
# module.forward = sa_forward(module) | |
# setattr(module, 'injection_schedule', injection_schedule) | |
def register_conv_control_efficient_w_mask(model, injection_schedule, mask): | |
def conv_forward(self): | |
def forward(input_tensor, temb): | |
hidden_states = input_tensor | |
hidden_states = self.norm1(hidden_states) | |
hidden_states = self.nonlinearity(hidden_states) | |
if self.upsample is not None: | |
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 | |
if hidden_states.shape[0] >= 64: | |
input_tensor = input_tensor.contiguous() | |
hidden_states = hidden_states.contiguous() | |
input_tensor = self.upsample(input_tensor) | |
hidden_states = self.upsample(hidden_states) | |
elif self.downsample is not None: | |
input_tensor = self.downsample(input_tensor) | |
hidden_states = self.downsample(hidden_states) | |
hidden_states = self.conv1(hidden_states) | |
if temb is not None: | |
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None] | |
if temb is not None and self.time_embedding_norm == "default": | |
hidden_states = hidden_states + temb | |
hidden_states = self.norm2(hidden_states) | |
if temb is not None and self.time_embedding_norm == "scale_shift": | |
scale, shift = torch.chunk(temb, 2, dim=1) | |
hidden_states = hidden_states * (1 + scale) + shift | |
hidden_states = self.nonlinearity(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.conv2(hidden_states) | |
if self.injection_schedule is not None and (self.t in self.injection_schedule or self.t == 1000): | |
# if False: | |
source_batch_size = int(hidden_states.shape[0] // 3) | |
target_size = int(np.sqrt(hidden_states.shape[-1])) | |
target_mask = F.interpolate(mask.unsqueeze(1),size=(target_size, target_size))[:,0,:,:] | |
target_mask = target_mask.view(target_mask.shape[0], -1).unsqueeze(-1) | |
# inject unconditional | |
hidden_states[source_batch_size:2 * source_batch_size] = hidden_states[:source_batch_size] * target_mask + hidden_states[source_batch_size:2 * source_batch_size] * (1-target_mask) | |
# inject conditional | |
hidden_states[2 * source_batch_size:] = hidden_states[:source_batch_size] * target_mask + hidden_states[2 * source_batch_size:] * (1-target_mask) | |
if self.conv_shortcut is not None: | |
input_tensor = self.conv_shortcut(input_tensor) | |
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor | |
return output_tensor | |
return forward | |
conv_module = model.unet.up_blocks[1].resnets[1] | |
conv_module.forward = conv_forward(conv_module) | |
setattr(conv_module, 'injection_schedule', injection_schedule) | |