Spaces:
Configuration error
Configuration error
File size: 14,244 Bytes
87e21d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
# This file is modified from https://github.com/PixArt-alpha/PixArt-sigma
import os
import torch
import torch.nn as nn
from timm.models.layers import DropPath
from diffusion.model.builder import MODELS
from diffusion.model.nets.basic_modules import DWMlp, GLUMBConv, MBConvPreGLU, Mlp
from diffusion.model.nets.fastlinear.modules import TritonLiteMLA
from diffusion.model.nets.sana import Sana, get_2d_sincos_pos_embed
from diffusion.model.nets.sana_blocks import (
Attention,
CaptionEmbedder,
FlashAttention,
LiteLA,
MultiHeadCrossAttention,
PatchEmbed,
T2IFinalLayer,
TimestepEmbedder,
t2i_modulate,
)
from diffusion.model.norms import RMSNorm
from diffusion.model.utils import auto_grad_checkpoint, to_2tuple
from diffusion.utils.logger import get_root_logger
class SanaUBlock(nn.Module):
"""
A SanaU block with global shared adaptive layer norm (adaLN-single) conditioning and U-shaped model.
"""
def __init__(
self,
hidden_size,
num_heads,
mlp_ratio=4.0,
drop_path=0,
input_size=None,
qk_norm=False,
attn_type="flash",
ffn_type="mlp",
mlp_acts=("silu", "silu", None),
skip_linear=False,
**block_kwargs,
):
super().__init__()
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
if attn_type == "flash":
# flash self attention
self.attn = FlashAttention(
hidden_size,
num_heads=num_heads,
qkv_bias=True,
qk_norm=qk_norm,
**block_kwargs,
)
elif attn_type == "linear":
# linear self attention
# TODO: Here the num_heads set to 36 for tmp used
self_num_heads = hidden_size // 32
self.attn = LiteLA(hidden_size, hidden_size, heads=self_num_heads, eps=1e-8, qk_norm=qk_norm)
elif attn_type == "triton_linear":
# linear self attention with triton kernel fusion
# TODO: Here the num_heads set to 36 for tmp used
self_num_heads = hidden_size // 32
self.attn = TritonLiteMLA(hidden_size, num_heads=self_num_heads, eps=1e-8)
elif attn_type == "vanilla":
# vanilla self attention
self.attn = Attention(hidden_size, num_heads=num_heads, qkv_bias=True)
else:
raise ValueError(f"{attn_type} type is not defined.")
self.cross_attn = MultiHeadCrossAttention(hidden_size, num_heads, **block_kwargs)
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
# to be compatible with lower version pytorch
if ffn_type == "dwmlp":
approx_gelu = lambda: nn.GELU(approximate="tanh")
self.mlp = DWMlp(
in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, drop=0
)
elif ffn_type == "glumbconv":
self.mlp = GLUMBConv(
in_features=hidden_size,
hidden_features=int(hidden_size * mlp_ratio),
use_bias=(True, True, False),
norm=(None, None, None),
act=mlp_acts,
)
elif ffn_type == "mbconvpreglu":
self.mlp = MBConvPreGLU(
in_dim=hidden_size,
out_dim=hidden_size,
mid_dim=int(hidden_size * mlp_ratio),
use_bias=(True, True, False),
norm=None,
act=("silu", "silu", None),
)
elif ffn_type == "mlp":
approx_gelu = lambda: nn.GELU(approximate="tanh")
self.mlp = Mlp(
in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, drop=0
)
else:
raise ValueError(f"{ffn_type} type is not defined.")
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size**0.5)
# skip connection
if skip_linear:
self.skip_linear = nn.Linear(hidden_size * 2, hidden_size, bias=True)
def forward(self, x, y, t, mask=None, skip_x=None, **kwargs):
B, N, C = x.shape
if skip_x is not None:
x = self.skip_linear(torch.cat([x, skip_x], dim=-1))
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
self.scale_shift_table[None] + t.reshape(B, 6, -1)
).chunk(6, dim=1)
x = x + self.drop_path(gate_msa * self.attn(t2i_modulate(self.norm1(x), shift_msa, scale_msa)).reshape(B, N, C))
x = x + self.cross_attn(x, y, mask)
x = x + self.drop_path(gate_mlp * self.mlp(t2i_modulate(self.norm2(x), shift_mlp, scale_mlp)))
return x
#############################################################################
# Core SanaU Model #
#################################################################################
@MODELS.register_module()
class SanaU(Sana):
"""
Diffusion model with a Transformer backbone.
"""
def __init__(
self,
input_size=32,
patch_size=2,
in_channels=4,
hidden_size=1152,
depth=29,
num_heads=16,
mlp_ratio=4.0,
class_dropout_prob=0.1,
learn_sigma=True,
pred_sigma=True,
drop_path: float = 0.0,
caption_channels=2304,
pe_interpolation=1.0,
config=None,
model_max_length=300,
micro_condition=False,
qk_norm=False,
y_norm=False,
norm_eps=1e-5,
attn_type="flash",
ffn_type="mlp",
use_pe=True,
y_norm_scale_factor=1.0,
patch_embed_kernel=None,
mlp_acts=("silu", "silu", None),
**kwargs,
):
super().__init__(
input_size=input_size,
patch_size=patch_size,
in_channels=in_channels,
hidden_size=hidden_size,
depth=depth,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
class_dropout_prob=class_dropout_prob,
learn_sigma=learn_sigma,
pred_sigma=pred_sigma,
drop_path=drop_path,
caption_channels=caption_channels,
pe_interpolation=pe_interpolation,
config=config,
model_max_length=model_max_length,
micro_condition=micro_condition,
qk_norm=qk_norm,
y_norm=y_norm,
norm_eps=norm_eps,
attn_type=attn_type,
ffn_type=ffn_type,
use_pe=use_pe,
y_norm_scale_factor=y_norm_scale_factor,
patch_embed_kernel=patch_embed_kernel,
mlp_acts=mlp_acts,
**kwargs,
)
kernel_size = patch_embed_kernel or patch_size
self.x_embedder = PatchEmbed(
input_size, patch_size, in_channels, hidden_size, kernel_size=kernel_size, bias=True
)
self.t_embedder = TimestepEmbedder(hidden_size)
num_patches = self.x_embedder.num_patches
self.base_size = input_size // self.patch_size
# Will use fixed sin-cos embedding:
self.register_buffer("pos_embed", torch.zeros(1, num_patches, hidden_size))
approx_gelu = lambda: nn.GELU(approximate="tanh")
self.t_block = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True))
self.y_embedder = CaptionEmbedder(
in_channels=caption_channels,
hidden_size=hidden_size,
uncond_prob=class_dropout_prob,
act_layer=approx_gelu,
token_num=model_max_length,
)
if self.y_norm:
self.attention_y_norm = RMSNorm(hidden_size, scale_factor=y_norm_scale_factor, eps=norm_eps)
drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)] # stochastic depth decay rule
self.blocks = nn.ModuleList(
[
SanaUBlock(
hidden_size,
num_heads,
mlp_ratio=mlp_ratio,
drop_path=drop_path[i],
input_size=(input_size // patch_size, input_size // patch_size),
qk_norm=qk_norm,
attn_type=attn_type,
ffn_type=ffn_type,
mlp_acts=mlp_acts,
skip_linear=i > depth // 2,
)
for i in range(depth)
]
)
self.final_layer = T2IFinalLayer(hidden_size, patch_size, self.out_channels)
self.initialize_weights()
if config:
logger = get_root_logger(os.path.join(config.work_dir, "train_log.log"))
logger = logger.warning
else:
logger = print
logger(f"use pe: {use_pe}, position embed interpolation: {self.pe_interpolation}, base size: {self.base_size}")
logger(
f"attention type: {attn_type}; ffn type: {ffn_type}; "
f"autocast linear attn: {os.environ.get('AUTOCAST_LINEAR_ATTN', False)}"
)
def forward(self, x, timestep, y, mask=None, data_info=None, **kwargs):
"""
Forward pass of SanaU.
x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
t: (N,) tensor of diffusion timesteps
y: (N, 1, 120, C) tensor of class labels
"""
x = x.to(self.dtype)
timestep = timestep.to(self.dtype)
y = y.to(self.dtype)
pos_embed = self.pos_embed.to(self.dtype)
self.h, self.w = x.shape[-2] // self.patch_size, x.shape[-1] // self.patch_size
x = self.x_embedder(x) + pos_embed # (N, T, D), where T = H * W / patch_size ** 2
t = self.t_embedder(timestep.to(x.dtype)) # (N, D)
t0 = self.t_block(t)
y = self.y_embedder(y, self.training) # (N, 1, L, D)
if self.y_norm:
y = self.attention_y_norm(y)
if mask is not None:
if mask.shape[0] != y.shape[0]:
mask = mask.repeat(y.shape[0] // mask.shape[0], 1)
mask = mask.squeeze(1).squeeze(1)
y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1])
y_lens = mask.sum(dim=1).tolist()
else:
y_lens = [y.shape[2]] * y.shape[0]
y = y.squeeze(1).view(1, -1, x.shape[-1])
results_hooker = {}
for i, block in enumerate(self.blocks):
if i > len(self.blocks) // 2:
x = auto_grad_checkpoint(block, x, y, t0, y_lens, skip_x=results_hooker[len(self.blocks) - i - 1])
else:
x = auto_grad_checkpoint(block, x, y, t0, y_lens) # (N, T, D) #support grad checkpoint
results_hooker[i] = x
x = self.final_layer(x, t) # (N, T, patch_size ** 2 * out_channels)
x = self.unpatchify(x) # (N, out_channels, H, W)
return x
def initialize_weights(self):
# Initialize transformer layers:
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
if self.use_pe:
# Initialize (and freeze) pos_embed by sin-cos embedding:
pos_embed = get_2d_sincos_pos_embed(
self.pos_embed.shape[-1],
int(self.x_embedder.num_patches**0.5),
pe_interpolation=self.pe_interpolation,
base_size=self.base_size,
)
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
w = self.x_embedder.proj.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
# Initialize timestep embedding MLP:
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
nn.init.normal_(self.t_block[1].weight, std=0.02)
# Initialize caption embedding MLP:
nn.init.normal_(self.y_embedder.y_proj.fc1.weight, std=0.02)
nn.init.normal_(self.y_embedder.y_proj.fc2.weight, std=0.02)
@property
def dtype(self):
return next(self.parameters()).dtype
#################################################################################
# SanaU Configs #
#################################################################################
@MODELS.register_module()
def SanaMSU_600M_P1_D28(**kwargs):
return SanaU(depth=28, hidden_size=1152, patch_size=1, num_heads=16, **kwargs)
@MODELS.register_module()
def SanaMSU_600M_P2_D28(**kwargs):
return SanaU(depth=28, hidden_size=1152, patch_size=2, num_heads=16, **kwargs)
@MODELS.register_module()
def SanaMSU_600M_P4_D28(**kwargs):
return SanaU(depth=28, hidden_size=1152, patch_size=4, num_heads=16, **kwargs)
@MODELS.register_module()
def SanaMSU_P1_D20(**kwargs):
# 20 layers, 1648.48M
return SanaU(depth=20, hidden_size=2240, patch_size=1, num_heads=20, **kwargs)
@MODELS.register_module()
def SanaMSU_P2_D20(**kwargs):
# 28 layers, 1648.48M
return SanaU(depth=20, hidden_size=2240, patch_size=2, num_heads=20, **kwargs)
|