Spaces:
Configuration error
Configuration error
File size: 16,162 Bytes
87e21d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
#!/usr/bin/env python
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
import argparse
import gc
import os
import random
import warnings
from dataclasses import dataclass, field
from datetime import datetime
from typing import List, Optional, Tuple, Union
import gradio as gr
import numpy as np
import pyrallis
import torch
from gradio.components import Image, Textbox
from torchvision.utils import _log_api_usage_once, make_grid, save_image
warnings.filterwarnings("ignore") # ignore warning
from asset.examples import examples
from diffusion import DPMS, FlowEuler, SASolverSampler
from diffusion.data.datasets.utils import *
from diffusion.model.builder import build_model, get_tokenizer_and_text_encoder, get_vae, vae_decode
from diffusion.model.utils import prepare_prompt_ar, resize_and_crop_tensor
from diffusion.utils.config import SanaConfig
from diffusion.utils.dist_utils import flush
from tools.download import find_model
# from diffusion.utils.misc import read_config
MAX_SEED = np.iinfo(np.int32).max
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, help="config path")
return parser.parse_known_args()[0]
@dataclass
class SanaInference(SanaConfig):
config: Optional[str] = "configs/sana_config/1024ms/Sana_1600M_img1024.yaml" # config
model_path: str = field(
default="output/Sana_1600M/SANA.pth", metadata={"help": "Path to the model file (positional)"}
)
output: str = "./output"
bs: int = 1
image_size: int = 1024
cfg_scale: float = 5.0
pag_scale: float = 2.0
seed: int = 42
step: int = -1
port: int = 7788
custom_image_size: Optional[int] = None
shield_model_path: str = field(
default="google/shieldgemma-2b",
metadata={"help": "The path to shield model, we employ ShieldGemma-2B by default."},
)
@torch.no_grad()
def ndarr_image(
tensor: Union[torch.Tensor, List[torch.Tensor]],
**kwargs,
) -> None:
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
_log_api_usage_once(save_image)
grid = make_grid(tensor, **kwargs)
# Add 0.5 after unnormalizing to [0, 255] to round to the nearest integer
ndarr = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
return ndarr
def set_env(seed=0):
torch.manual_seed(seed)
torch.set_grad_enabled(False)
for _ in range(30):
torch.randn(1, 4, args.image_size, args.image_size)
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def classify_height_width_bin(height: int, width: int, ratios: dict) -> Tuple[int, int]:
"""Returns binned height and width."""
ar = float(height / width)
closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar))
default_hw = ratios[closest_ratio]
return int(default_hw[0]), int(default_hw[1])
@torch.inference_mode()
def generate_img(
prompt,
sampler,
sample_steps,
scale,
pag_scale=1.0,
guidance_type="classifier-free",
seed=0,
randomize_seed=False,
base_size=1024,
height=1024,
width=1024,
):
flush()
gc.collect()
torch.cuda.empty_cache()
seed = int(randomize_seed_fn(seed, randomize_seed))
set_env(seed)
base_ratios = eval(f"ASPECT_RATIO_{base_size}_TEST")
os.makedirs(f"output/demo/online_demo_prompts/", exist_ok=True)
save_promt_path = f"output/demo/online_demo_prompts/tested_prompts{datetime.now().date()}.txt"
with open(save_promt_path, "a") as f:
f.write(f"{seed}: {prompt}" + "\n")
print(f"{seed}: {prompt}")
prompt_clean, prompt_show, _, _, _ = prepare_prompt_ar(prompt, base_ratios, device=device) # ar for aspect ratio
orig_height, orig_width = height, width
height, width = classify_height_width_bin(height, width, ratios=base_ratios)
prompt_show += (
f"\n Sample steps: {sample_steps}, CFG Scale: {scale}, PAG Scale: {pag_scale}, flow_shift: {flow_shift}"
)
prompt_clean = prompt_clean.strip()
if isinstance(prompt_clean, str):
prompts = [prompt_clean]
# prepare text feature
if not config.text_encoder.chi_prompt:
max_length_all = max_sequence_length
prompts_all = prompts
else:
chi_prompt = "\n".join(config.text_encoder.chi_prompt)
prompts_all = [chi_prompt + prompt for prompt in prompts]
num_chi_prompt_tokens = len(tokenizer.encode(chi_prompt))
max_length_all = num_chi_prompt_tokens + max_sequence_length - 2 # magic number 2: [bos], [_]
caption_token = tokenizer(
prompts_all, max_length=max_length_all, padding="max_length", truncation=True, return_tensors="pt"
).to(device)
select_index = [0] + list(range(-max_sequence_length + 1, 0))
caption_embs = text_encoder(caption_token.input_ids, caption_token.attention_mask)[0][:, None][:, :, select_index]
emb_masks = caption_token.attention_mask[:, select_index]
null_y = null_caption_embs.repeat(len(prompts), 1, 1)[:, None]
n = len(prompts)
latent_size_h, latent_size_w = height // config.vae.vae_downsample_rate, width // config.vae.vae_downsample_rate
z = torch.randn(n, config.vae.vae_latent_dim, latent_size_h, latent_size_w, device=device, dtype=weight_dtype)
model_kwargs = dict(data_info={"img_hw": (latent_size_h, latent_size_w), "aspect_ratio": 1.0}, mask=emb_masks)
print(f"Latent Size: {z.shape}")
# Sample images:
if sampler == "dpm-solver":
# Create sampling noise:
dpm_solver = DPMS(
model.forward_with_dpmsolver,
condition=caption_embs,
uncondition=null_y,
cfg_scale=scale,
model_kwargs=model_kwargs,
)
samples = dpm_solver.sample(
z,
steps=sample_steps,
order=2,
skip_type="time_uniform",
method="multistep",
)
elif sampler == "sa-solver":
# Create sampling noise:
sa_solver = SASolverSampler(model.forward_with_dpmsolver, device=device)
samples = sa_solver.sample(
S=sample_steps,
batch_size=n,
shape=(4, latent_size_h, latent_size_w),
eta=1,
conditioning=caption_embs,
unconditional_conditioning=null_y,
unconditional_guidance_scale=scale,
model_kwargs=model_kwargs,
)[0]
elif sampler == "flow_euler":
flow_solver = FlowEuler(
model, condition=caption_embs, uncondition=null_y, cfg_scale=scale, model_kwargs=model_kwargs
)
samples = flow_solver.sample(
z,
steps=sample_steps,
)
elif sampler == "flow_dpm-solver":
if not (pag_scale > 1.0 and config.model.attn_type == "linear"):
guidance_type = "classifier-free"
dpm_solver = DPMS(
model,
condition=caption_embs,
uncondition=null_y,
guidance_type=guidance_type,
cfg_scale=scale,
pag_scale=pag_scale,
pag_applied_layers=pag_applied_layers,
model_type="flow",
model_kwargs=model_kwargs,
schedule="FLOW",
)
samples = dpm_solver.sample(
z,
steps=sample_steps,
order=2,
skip_type="time_uniform_flow",
method="multistep",
flow_shift=flow_shift,
)
else:
raise ValueError(f"{args.sampling_algo} is not defined")
samples = samples.to(weight_dtype)
samples = vae_decode(config.vae.vae_type, vae, samples)
samples = resize_and_crop_tensor(samples, orig_width, orig_height)
display_model_info = (
f"Model path: {args.model_path},\nBase image size: {args.image_size}, \nSampling Algo: {sampler}"
)
return ndarr_image(samples, normalize=True, value_range=(-1, 1)), prompt_show, display_model_info, seed
if __name__ == "__main__":
from diffusion.utils.logger import get_root_logger
args = get_args()
config = args = pyrallis.parse(config_class=SanaInference, config_path=args.config)
# config = read_config(args.config)
device = "cuda" if torch.cuda.is_available() else "cpu"
logger = get_root_logger()
args.image_size = config.model.image_size
assert args.image_size in [
256,
512,
1024,
2048,
4096,
], "We only provide pre-trained models for 256x256, 512x512, 1024x1024, 2048x2048 and 4096x4096 resolutions."
# only support fixed latent size currently
latent_size = config.model.image_size // config.vae.vae_downsample_rate
max_sequence_length = config.text_encoder.model_max_length
pe_interpolation = config.model.pe_interpolation
micro_condition = config.model.micro_condition
pag_applied_layers = config.model.pag_applied_layers
flow_shift = config.scheduler.flow_shift
if config.model.mixed_precision == "fp16":
weight_dtype = torch.float16
elif config.model.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
elif config.model.mixed_precision == "fp32":
weight_dtype = torch.float32
else:
raise ValueError(f"weigh precision {config.model.mixed_precision} is not defined")
logger.info(f"Inference with {weight_dtype}")
vae = get_vae(config.vae.vae_type, config.vae.vae_pretrained, device).to(weight_dtype)
tokenizer, text_encoder = get_tokenizer_and_text_encoder(name=config.text_encoder.text_encoder_name, device=device)
# model setting
pred_sigma = getattr(config.scheduler, "pred_sigma", True)
learn_sigma = getattr(config.scheduler, "learn_sigma", True) and pred_sigma
model_kwargs = {
"input_size": latent_size,
"pe_interpolation": config.model.pe_interpolation,
"config": config,
"model_max_length": config.text_encoder.model_max_length,
"qk_norm": config.model.qk_norm,
"micro_condition": config.model.micro_condition,
"caption_channels": text_encoder.config.hidden_size,
"y_norm": config.text_encoder.y_norm,
"attn_type": config.model.attn_type,
"ffn_type": config.model.ffn_type,
"mlp_ratio": config.model.mlp_ratio,
"mlp_acts": list(config.model.mlp_acts),
"in_channels": config.vae.vae_latent_dim,
"y_norm_scale_factor": config.text_encoder.y_norm_scale_factor,
"use_pe": config.model.use_pe,
"linear_head_dim": config.model.linear_head_dim,
"pred_sigma": pred_sigma,
"learn_sigma": learn_sigma,
}
model = build_model(
config.model.model, use_fp32_attention=config.model.get("fp32_attention", False), **model_kwargs
).to(device)
# model = build_model(config.model, **model_kwargs).to(device)
logger.info(
f"{model.__class__.__name__}:{config.model.model}, Model Parameters: {sum(p.numel() for p in model.parameters()):,}"
)
logger.info("Generating sample from ckpt: %s" % args.model_path)
state_dict = find_model(args.model_path)
if "pos_embed" in state_dict["state_dict"]:
del state_dict["state_dict"]["pos_embed"]
missing, unexpected = model.load_state_dict(state_dict["state_dict"], strict=False)
logger.warning(f"Missing keys: {missing}")
logger.warning(f"Unexpected keys: {unexpected}")
model.eval().to(weight_dtype)
base_ratios = eval(f"ASPECT_RATIO_{args.image_size}_TEST")
null_caption_token = tokenizer(
"", max_length=max_sequence_length, padding="max_length", truncation=True, return_tensors="pt"
).to(device)
null_caption_embs = text_encoder(null_caption_token.input_ids, attention_mask=null_caption_token.attention_mask)[0]
model_size = "1.6" if "D20" in args.model_path else "0.6"
title = f"""
<div style='display: flex; align-items: center; justify-content: center; text-align: center;'>
<img src="https://raw.githubusercontent.com/NVlabs/Sana/refs/heads/main/asset/logo.png" width="50%" alt="logo"/>
</div>
"""
DESCRIPTION = f"""
<p><span style="font-size: 36px; font-weight: bold;">Sana-{model_size}B</span><span style="font-size: 20px; font-weight: bold;">{args.image_size}px</span></p>
<p style="font-size: 16px; font-weight: bold;">Sana: Efficient High-Resolution Image Synthesis with Linear Diffusion Transformer</p>
<p><span style="font-size: 16px;"><a href="https://arxiv.org/abs/2410.10629">[Paper]</a></span> <span style="font-size: 16px;"><a href="https://github.com/NVlabs/Sana">[Github(coming soon)]</a></span> <span style="font-size: 16px;"><a href="https://nvlabs.github.io/Sana">[Project]</a></span</p>
<p style="font-size: 16px; font-weight: bold;">Powered by <a href="https://hanlab.mit.edu/projects/dc-ae">DC-AE</a> with 32x latent space</p>
"""
if model_size == "0.6":
DESCRIPTION += "\n<p>0.6B model's text rendering ability is limited.</p>"
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
demo = gr.Interface(
fn=generate_img,
inputs=[
Textbox(
label="Note: If you want to specify a aspect ratio or determine a customized height and width, "
"use --ar h:w (or --aspect_ratio h:w) or --hw h:w. If no aspect ratio or hw is given, all setting will be default.",
placeholder="Please enter your prompt. \n",
),
gr.Radio(
choices=["dpm-solver", "sa-solver", "flow_dpm-solver", "flow_euler"],
label=f"Sampler",
interactive=True,
value="flow_dpm-solver",
),
gr.Slider(label="Sample Steps", minimum=1, maximum=100, value=20, step=1),
gr.Slider(label="Guidance Scale", minimum=1.0, maximum=30.0, value=5.0, step=0.1),
gr.Slider(label="PAG Scale", minimum=1.0, maximum=10.0, value=2.5, step=0.5),
gr.Radio(
choices=["classifier-free", "classifier-free_PAG", "classifier-free_PAG_seq"],
label=f"Guidance Type",
interactive=True,
value="classifier-free_PAG_seq",
),
gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
),
gr.Checkbox(label="Randomize seed", value=True),
gr.Radio(
choices=[256, 512, 1024, 2048, 4096],
label=f"Base Size",
interactive=True,
value=args.image_size,
),
gr.Slider(
label="Height",
minimum=256,
maximum=6000,
step=32,
value=args.image_size,
),
gr.Slider(
label="Width",
minimum=256,
maximum=6000,
step=32,
value=args.image_size,
),
],
outputs=[
Image(type="numpy", label="Img"),
Textbox(label="clean prompt"),
Textbox(label="model info"),
gr.Slider(label="seed"),
],
title=title,
description=DESCRIPTION,
examples=examples,
)
demo.launch(server_name="0.0.0.0", server_port=args.port, debug=True, share=True)
|