Spaces:
Configuration error
Configuration error
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# SPDX-License-Identifier: Apache-2.0 | |
import torch | |
from diffusers.models import AutoencoderKL | |
from mmcv import Registry | |
from termcolor import colored | |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, T5EncoderModel, T5Tokenizer | |
from transformers import logging as transformers_logging | |
from diffusion.model.dc_ae.efficientvit.ae_model_zoo import DCAE_HF | |
from diffusion.model.utils import set_fp32_attention, set_grad_checkpoint | |
MODELS = Registry("models") | |
transformers_logging.set_verbosity_error() | |
def build_model(cfg, use_grad_checkpoint=False, use_fp32_attention=False, gc_step=1, **kwargs): | |
if isinstance(cfg, str): | |
cfg = dict(type=cfg) | |
model = MODELS.build(cfg, default_args=kwargs) | |
if use_grad_checkpoint: | |
set_grad_checkpoint(model, gc_step=gc_step) | |
if use_fp32_attention: | |
set_fp32_attention(model) | |
return model | |
def get_tokenizer_and_text_encoder(name="T5", device="cuda"): | |
text_encoder_dict = { | |
"T5": "DeepFloyd/t5-v1_1-xxl", | |
"T5-small": "google/t5-v1_1-small", | |
"T5-base": "google/t5-v1_1-base", | |
"T5-large": "google/t5-v1_1-large", | |
"T5-xl": "google/t5-v1_1-xl", | |
"T5-xxl": "google/t5-v1_1-xxl", | |
"gemma-2b": "google/gemma-2b", | |
"gemma-2b-it": "google/gemma-2b-it", | |
"gemma-2-2b": "google/gemma-2-2b", | |
"gemma-2-2b-it": "google/gemma-2-2b-it", | |
"gemma-2-9b": "google/gemma-2-9b", | |
"gemma-2-9b-it": "google/gemma-2-9b-it", | |
"Qwen2-0.5B-Instruct": "Qwen/Qwen2-0.5B-Instruct", | |
"Qwen2-1.5B-Instruct": "Qwen/Qwen2-1.5B-Instruct", | |
} | |
assert name in list(text_encoder_dict.keys()), f"not support this text encoder: {name}" | |
if "T5" in name: | |
tokenizer = T5Tokenizer.from_pretrained(text_encoder_dict[name]) | |
text_encoder = T5EncoderModel.from_pretrained(text_encoder_dict[name], torch_dtype=torch.float16).to(device) | |
elif "gemma" in name or "Qwen" in name: | |
tokenizer = AutoTokenizer.from_pretrained(text_encoder_dict[name]) | |
tokenizer.padding_side = "right" | |
text_encoder = ( | |
AutoModelForCausalLM.from_pretrained(text_encoder_dict[name], torch_dtype=torch.bfloat16) | |
.get_decoder() | |
.to(device) | |
) | |
else: | |
print("error load text encoder") | |
exit() | |
return tokenizer, text_encoder | |
def get_vae(name, model_path, device="cuda"): | |
if name == "sdxl" or name == "sd3": | |
vae = AutoencoderKL.from_pretrained(model_path).to(device).to(torch.float16) | |
if name == "sdxl": | |
vae.config.shift_factor = 0 | |
return vae | |
elif "dc-ae" in name: | |
print(colored(f"[DC-AE] Loading model from {model_path}", attrs=["bold"])) | |
dc_ae = DCAE_HF.from_pretrained(model_path).to(device).eval() | |
return dc_ae | |
else: | |
print("error load vae") | |
exit() | |
def vae_encode(name, vae, images, sample_posterior, device): | |
if name == "sdxl" or name == "sd3": | |
posterior = vae.encode(images.to(device)).latent_dist | |
if sample_posterior: | |
z = posterior.sample() | |
else: | |
z = posterior.mode() | |
z = (z - vae.config.shift_factor) * vae.config.scaling_factor | |
elif "dc-ae" in name: | |
ae = vae | |
z = ae.encode(images.to(device)) | |
z = z * ae.cfg.scaling_factor | |
else: | |
print("error load vae") | |
exit() | |
return z | |
def vae_decode(name, vae, latent): | |
if name == "sdxl" or name == "sd3": | |
latent = (latent.detach() / vae.config.scaling_factor) + vae.config.shift_factor | |
samples = vae.decode(latent).sample | |
elif "dc-ae" in name: | |
ae = vae | |
samples = ae.decode(latent.detach() / ae.cfg.scaling_factor) | |
else: | |
print("error load vae") | |
exit() | |
return samples | |