Spaces:
Configuration error
Configuration error
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# SPDX-License-Identifier: Apache-2.0 | |
import math | |
import os | |
import random | |
import re | |
import sys | |
from collections.abc import Iterable | |
from itertools import repeat | |
import torch | |
import torch.distributed as dist | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from PIL import Image | |
from torch.utils.checkpoint import checkpoint, checkpoint_sequential | |
from torchvision import transforms as T | |
def _ntuple(n): | |
def parse(x): | |
if isinstance(x, Iterable) and not isinstance(x, str): | |
return x | |
return tuple(repeat(x, n)) | |
return parse | |
to_1tuple = _ntuple(1) | |
to_2tuple = _ntuple(2) | |
def set_grad_checkpoint(model, gc_step=1): | |
assert isinstance(model, nn.Module) | |
def set_attr(module): | |
module.grad_checkpointing = True | |
module.grad_checkpointing_step = gc_step | |
model.apply(set_attr) | |
def set_fp32_attention(model): | |
assert isinstance(model, nn.Module) | |
def set_attr(module): | |
module.fp32_attention = True | |
model.apply(set_attr) | |
def auto_grad_checkpoint(module, *args, **kwargs): | |
if getattr(module, "grad_checkpointing", False): | |
if isinstance(module, Iterable): | |
gc_step = module[0].grad_checkpointing_step | |
return checkpoint_sequential(module, gc_step, *args, **kwargs) | |
else: | |
return checkpoint(module, *args, **kwargs) | |
return module(*args, **kwargs) | |
def checkpoint_sequential(functions, step, input, *args, **kwargs): | |
# Hack for keyword-only parameter in a python 2.7-compliant way | |
preserve = kwargs.pop("preserve_rng_state", True) | |
if kwargs: | |
raise ValueError("Unexpected keyword arguments: " + ",".join(arg for arg in kwargs)) | |
def run_function(start, end, functions): | |
def forward(input): | |
for j in range(start, end + 1): | |
input = functions[j](input, *args) | |
return input | |
return forward | |
if isinstance(functions, torch.nn.Sequential): | |
functions = list(functions.children()) | |
# the last chunk has to be non-volatile | |
end = -1 | |
segment = len(functions) // step | |
for start in range(0, step * (segment - 1), step): | |
end = start + step - 1 | |
input = checkpoint(run_function(start, end, functions), input, preserve_rng_state=preserve) | |
return run_function(end + 1, len(functions) - 1, functions)(input) | |
def window_partition(x, window_size): | |
""" | |
Partition into non-overlapping windows with padding if needed. | |
Args: | |
x (tensor): input tokens with [B, H, W, C]. | |
window_size (int): window size. | |
Returns: | |
windows: windows after partition with [B * num_windows, window_size, window_size, C]. | |
(Hp, Wp): padded height and width before partition | |
""" | |
B, H, W, C = x.shape | |
pad_h = (window_size - H % window_size) % window_size | |
pad_w = (window_size - W % window_size) % window_size | |
if pad_h > 0 or pad_w > 0: | |
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h)) | |
Hp, Wp = H + pad_h, W + pad_w | |
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C) | |
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) | |
return windows, (Hp, Wp) | |
def window_unpartition(windows, window_size, pad_hw, hw): | |
""" | |
Window unpartition into original sequences and removing padding. | |
Args: | |
x (tensor): input tokens with [B * num_windows, window_size, window_size, C]. | |
window_size (int): window size. | |
pad_hw (Tuple): padded height and width (Hp, Wp). | |
hw (Tuple): original height and width (H, W) before padding. | |
Returns: | |
x: unpartitioned sequences with [B, H, W, C]. | |
""" | |
Hp, Wp = pad_hw | |
H, W = hw | |
B = windows.shape[0] // (Hp * Wp // window_size // window_size) | |
x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1) | |
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1) | |
if Hp > H or Wp > W: | |
x = x[:, :H, :W, :].contiguous() | |
return x | |
def get_rel_pos(q_size, k_size, rel_pos): | |
""" | |
Get relative positional embeddings according to the relative positions of | |
query and key sizes. | |
Args: | |
q_size (int): size of query q. | |
k_size (int): size of key k. | |
rel_pos (Tensor): relative position embeddings (L, C). | |
Returns: | |
Extracted positional embeddings according to relative positions. | |
""" | |
max_rel_dist = int(2 * max(q_size, k_size) - 1) | |
# Interpolate rel pos if needed. | |
if rel_pos.shape[0] != max_rel_dist: | |
# Interpolate rel pos. | |
rel_pos_resized = F.interpolate( | |
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1), | |
size=max_rel_dist, | |
mode="linear", | |
) | |
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0) | |
else: | |
rel_pos_resized = rel_pos | |
# Scale the coords with short length if shapes for q and k are different. | |
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0) | |
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0) | |
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0) | |
return rel_pos_resized[relative_coords.long()] | |
def add_decomposed_rel_pos(attn, q, rel_pos_h, rel_pos_w, q_size, k_size): | |
""" | |
Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`. | |
https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950 | |
Args: | |
attn (Tensor): attention map. | |
q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C). | |
rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis. | |
rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis. | |
q_size (Tuple): spatial sequence size of query q with (q_h, q_w). | |
k_size (Tuple): spatial sequence size of key k with (k_h, k_w). | |
Returns: | |
attn (Tensor): attention map with added relative positional embeddings. | |
""" | |
q_h, q_w = q_size | |
k_h, k_w = k_size | |
Rh = get_rel_pos(q_h, k_h, rel_pos_h) | |
Rw = get_rel_pos(q_w, k_w, rel_pos_w) | |
B, _, dim = q.shape | |
r_q = q.reshape(B, q_h, q_w, dim) | |
rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh) | |
rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw) | |
attn = (attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]).view( | |
B, q_h * q_w, k_h * k_w | |
) | |
return attn | |
def mean_flat(tensor): | |
return tensor.mean(dim=list(range(1, tensor.ndim))) | |
################################################################################# | |
# Token Masking and Unmasking # | |
################################################################################# | |
def get_mask(batch, length, mask_ratio, device, mask_type=None, data_info=None, extra_len=0): | |
""" | |
Get the binary mask for the input sequence. | |
Args: | |
- batch: batch size | |
- length: sequence length | |
- mask_ratio: ratio of tokens to mask | |
- data_info: dictionary with info for reconstruction | |
return: | |
mask_dict with following keys: | |
- mask: binary mask, 0 is keep, 1 is remove | |
- ids_keep: indices of tokens to keep | |
- ids_restore: indices to restore the original order | |
""" | |
assert mask_type in ["random", "fft", "laplacian", "group"] | |
mask = torch.ones([batch, length], device=device) | |
len_keep = int(length * (1 - mask_ratio)) - extra_len | |
if mask_type == "random" or mask_type == "group": | |
noise = torch.rand(batch, length, device=device) # noise in [0, 1] | |
ids_shuffle = torch.argsort(noise, dim=1) # ascend: small is keep, large is remove | |
ids_restore = torch.argsort(ids_shuffle, dim=1) | |
# keep the first subset | |
ids_keep = ids_shuffle[:, :len_keep] | |
ids_removed = ids_shuffle[:, len_keep:] | |
elif mask_type in ["fft", "laplacian"]: | |
if "strength" in data_info: | |
strength = data_info["strength"] | |
else: | |
N = data_info["N"][0] | |
img = data_info["ori_img"] | |
# 获取原图的尺寸信息 | |
_, C, H, W = img.shape | |
if mask_type == "fft": | |
# 对图片进行reshape,将其变为patch (3, H/N, N, W/N, N) | |
reshaped_image = img.reshape((batch, -1, H // N, N, W // N, N)) | |
fft_image = torch.fft.fftn(reshaped_image, dim=(3, 5)) | |
# 取绝对值并求和获取频率强度 | |
strength = torch.sum(torch.abs(fft_image), dim=(1, 3, 5)).reshape( | |
( | |
batch, | |
-1, | |
) | |
) | |
elif type == "laplacian": | |
laplacian_kernel = torch.tensor([[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]], dtype=torch.float32).reshape( | |
1, 1, 3, 3 | |
) | |
laplacian_kernel = laplacian_kernel.repeat(C, 1, 1, 1) | |
# 对图片进行reshape,将其变为patch (3, H/N, N, W/N, N) | |
reshaped_image = img.reshape(-1, C, H // N, N, W // N, N).permute(0, 2, 4, 1, 3, 5).reshape(-1, C, N, N) | |
laplacian_response = F.conv2d(reshaped_image, laplacian_kernel, padding=1, groups=C) | |
strength = laplacian_response.sum(dim=[1, 2, 3]).reshape( | |
( | |
batch, | |
-1, | |
) | |
) | |
# 对频率强度进行归一化,然后使用torch.multinomial进行采样 | |
probabilities = strength / (strength.max(dim=1)[0][:, None] + 1e-5) | |
ids_shuffle = torch.multinomial(probabilities.clip(1e-5, 1), length, replacement=False) | |
ids_keep = ids_shuffle[:, :len_keep] | |
ids_restore = torch.argsort(ids_shuffle, dim=1) | |
ids_removed = ids_shuffle[:, len_keep:] | |
mask[:, :len_keep] = 0 | |
mask = torch.gather(mask, dim=1, index=ids_restore) | |
return {"mask": mask, "ids_keep": ids_keep, "ids_restore": ids_restore, "ids_removed": ids_removed} | |
def mask_out_token(x, ids_keep, ids_removed=None): | |
""" | |
Mask out the tokens specified by ids_keep. | |
Args: | |
- x: input sequence, [N, L, D] | |
- ids_keep: indices of tokens to keep | |
return: | |
- x_masked: masked sequence | |
""" | |
N, L, D = x.shape # batch, length, dim | |
x_remain = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D)) | |
if ids_removed is not None: | |
x_masked = torch.gather(x, dim=1, index=ids_removed.unsqueeze(-1).repeat(1, 1, D)) | |
return x_remain, x_masked | |
else: | |
return x_remain | |
def mask_tokens(x, mask_ratio): | |
""" | |
Perform per-sample random masking by per-sample shuffling. | |
Per-sample shuffling is done by argsort random noise. | |
x: [N, L, D], sequence | |
""" | |
N, L, D = x.shape # batch, length, dim | |
len_keep = int(L * (1 - mask_ratio)) | |
noise = torch.rand(N, L, device=x.device) # noise in [0, 1] | |
# sort noise for each sample | |
ids_shuffle = torch.argsort(noise, dim=1) # ascend: small is keep, large is remove | |
ids_restore = torch.argsort(ids_shuffle, dim=1) | |
# keep the first subset | |
ids_keep = ids_shuffle[:, :len_keep] | |
x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D)) | |
# generate the binary mask: 0 is keep, 1 is remove | |
mask = torch.ones([N, L], device=x.device) | |
mask[:, :len_keep] = 0 | |
mask = torch.gather(mask, dim=1, index=ids_restore) | |
return x_masked, mask, ids_restore | |
def unmask_tokens(x, ids_restore, mask_token): | |
# x: [N, T, D] if extras == 0 (i.e., no cls token) else x: [N, T+1, D] | |
mask_tokens = mask_token.repeat(x.shape[0], ids_restore.shape[1] - x.shape[1], 1) | |
x = torch.cat([x, mask_tokens], dim=1) | |
x = torch.gather(x, dim=1, index=ids_restore.unsqueeze(-1).repeat(1, 1, x.shape[2])) # unshuffle | |
return x | |
# Parse 'None' to None and others to float value | |
def parse_float_none(s): | |
assert isinstance(s, str) | |
return None if s == "None" else float(s) | |
# ---------------------------------------------------------------------------- | |
# Parse a comma separated list of numbers or ranges and return a list of ints. | |
# Example: '1,2,5-10' returns [1, 2, 5, 6, 7, 8, 9, 10] | |
def parse_int_list(s): | |
if isinstance(s, list): | |
return s | |
ranges = [] | |
range_re = re.compile(r"^(\d+)-(\d+)$") | |
for p in s.split(","): | |
m = range_re.match(p) | |
if m: | |
ranges.extend(range(int(m.group(1)), int(m.group(2)) + 1)) | |
else: | |
ranges.append(int(p)) | |
return ranges | |
def init_processes(fn, args): | |
"""Initialize the distributed environment.""" | |
os.environ["MASTER_ADDR"] = args.master_address | |
os.environ["MASTER_PORT"] = str(random.randint(2000, 6000)) | |
print(f'MASTER_ADDR = {os.environ["MASTER_ADDR"]}') | |
print(f'MASTER_PORT = {os.environ["MASTER_PORT"]}') | |
torch.cuda.set_device(args.local_rank) | |
dist.init_process_group(backend="nccl", init_method="env://", rank=args.global_rank, world_size=args.global_size) | |
fn(args) | |
if args.global_size > 1: | |
cleanup() | |
def mprint(*args, **kwargs): | |
""" | |
Print only from rank 0. | |
""" | |
if dist.get_rank() == 0: | |
print(*args, **kwargs) | |
def cleanup(): | |
""" | |
End DDP training. | |
""" | |
dist.barrier() | |
mprint("Done!") | |
dist.barrier() | |
dist.destroy_process_group() | |
# ---------------------------------------------------------------------------- | |
# logging info. | |
class Logger: | |
""" | |
Redirect stderr to stdout, optionally print stdout to a file, | |
and optionally force flushing on both stdout and the file. | |
""" | |
def __init__(self, file_name=None, file_mode="w", should_flush=True): | |
self.file = None | |
if file_name is not None: | |
self.file = open(file_name, file_mode) | |
self.should_flush = should_flush | |
self.stdout = sys.stdout | |
self.stderr = sys.stderr | |
sys.stdout = self | |
sys.stderr = self | |
def __enter__(self): | |
return self | |
def __exit__(self, exc_type, exc_value, traceback): | |
self.close() | |
def write(self, text): | |
"""Write text to stdout (and a file) and optionally flush.""" | |
if len(text) == 0: # workaround for a bug in VSCode debugger: sys.stdout.write(''); sys.stdout.flush() => crash | |
return | |
if self.file is not None: | |
self.file.write(text) | |
self.stdout.write(text) | |
if self.should_flush: | |
self.flush() | |
def flush(self): | |
"""Flush written text to both stdout and a file, if open.""" | |
if self.file is not None: | |
self.file.flush() | |
self.stdout.flush() | |
def close(self): | |
"""Flush, close possible files, and remove stdout/stderr mirroring.""" | |
self.flush() | |
# if using multiple loggers, prevent closing in wrong order | |
if sys.stdout is self: | |
sys.stdout = self.stdout | |
if sys.stderr is self: | |
sys.stderr = self.stderr | |
if self.file is not None: | |
self.file.close() | |
class StackedRandomGenerator: | |
def __init__(self, device, seeds): | |
super().__init__() | |
self.generators = [torch.Generator(device).manual_seed(int(seed) % (1 << 32)) for seed in seeds] | |
def randn(self, size, **kwargs): | |
assert size[0] == len(self.generators) | |
return torch.stack([torch.randn(size[1:], generator=gen, **kwargs) for gen in self.generators]) | |
def randn_like(self, input): | |
return self.randn(input.shape, dtype=input.dtype, layout=input.layout, device=input.device) | |
def randint(self, *args, size, **kwargs): | |
assert size[0] == len(self.generators) | |
return torch.stack([torch.randint(*args, size=size[1:], generator=gen, **kwargs) for gen in self.generators]) | |
def prepare_prompt_ar(prompt, ratios, device="cpu", show=True): | |
# get aspect_ratio or ar | |
aspect_ratios = re.findall(r"--aspect_ratio\s+(\d+:\d+)", prompt) | |
ars = re.findall(r"--ar\s+(\d+:\d+)", prompt) | |
custom_hw = re.findall(r"--hw\s+(\d+:\d+)", prompt) | |
if show: | |
print("aspect_ratios:", aspect_ratios, "ars:", ars, "hws:", custom_hw) | |
prompt_clean = prompt.split("--aspect_ratio")[0].split("--ar")[0].split("--hw")[0] | |
if len(aspect_ratios) + len(ars) + len(custom_hw) == 0 and show: | |
print( | |
"Wrong prompt format. Set to default ar: 1. change your prompt into format '--ar h:w or --hw h:w' for correct generating" | |
) | |
if len(aspect_ratios) != 0: | |
ar = float(aspect_ratios[0].split(":")[0]) / float(aspect_ratios[0].split(":")[1]) | |
elif len(ars) != 0: | |
ar = float(ars[0].split(":")[0]) / float(ars[0].split(":")[1]) | |
else: | |
ar = 1.0 | |
closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar)) | |
if len(custom_hw) != 0: | |
custom_hw = [float(custom_hw[0].split(":")[0]), float(custom_hw[0].split(":")[1])] | |
else: | |
custom_hw = ratios[closest_ratio] | |
default_hw = ratios[closest_ratio] | |
prompt_show = f"prompt: {prompt_clean.strip()}\nSize: --ar {closest_ratio}, --bin hw {ratios[closest_ratio]}, --custom hw {custom_hw}" | |
return ( | |
prompt_clean, | |
prompt_show, | |
torch.tensor(default_hw, device=device)[None], | |
torch.tensor([float(closest_ratio)], device=device)[None], | |
torch.tensor(custom_hw, device=device)[None], | |
) | |
def resize_and_crop_tensor(samples: torch.Tensor, new_width: int, new_height: int) -> torch.Tensor: | |
orig_height, orig_width = samples.shape[2], samples.shape[3] | |
# Check if resizing is needed | |
if orig_height != new_height or orig_width != new_width: | |
ratio = max(new_height / orig_height, new_width / orig_width) | |
resized_width = int(orig_width * ratio) | |
resized_height = int(orig_height * ratio) | |
# Resize | |
samples = F.interpolate(samples, size=(resized_height, resized_width), mode="bilinear", align_corners=False) | |
# Center Crop | |
start_x = (resized_width - new_width) // 2 | |
end_x = start_x + new_width | |
start_y = (resized_height - new_height) // 2 | |
end_y = start_y + new_height | |
samples = samples[:, :, start_y:end_y, start_x:end_x] | |
return samples | |
def resize_and_crop_img(img: Image, new_width, new_height): | |
orig_width, orig_height = img.size | |
ratio = max(new_width / orig_width, new_height / orig_height) | |
resized_width = int(orig_width * ratio) | |
resized_height = int(orig_height * ratio) | |
img = img.resize((resized_width, resized_height), Image.LANCZOS) | |
left = (resized_width - new_width) / 2 | |
top = (resized_height - new_height) / 2 | |
right = (resized_width + new_width) / 2 | |
bottom = (resized_height + new_height) / 2 | |
img = img.crop((left, top, right, bottom)) | |
return img | |
def mask_feature(emb, mask): | |
if emb.shape[0] == 1: | |
keep_index = mask.sum().item() | |
return emb[:, :, :keep_index, :], keep_index | |
else: | |
masked_feature = emb * mask[:, None, :, None] | |
return masked_feature, emb.shape[2] | |
def val2list(x: list or tuple or any, repeat_time=1) -> list: # type: ignore | |
"""Repeat `val` for `repeat_time` times and return the list or val if list/tuple.""" | |
if isinstance(x, (list, tuple)): | |
return list(x) | |
return [x for _ in range(repeat_time)] | |
def val2tuple(x: list or tuple or any, min_len: int = 1, idx_repeat: int = -1) -> tuple: # type: ignore | |
"""Return tuple with min_len by repeating element at idx_repeat.""" | |
# convert to list first | |
x = val2list(x) | |
# repeat elements if necessary | |
if len(x) > 0: | |
x[idx_repeat:idx_repeat] = [x[idx_repeat] for _ in range(min_len - len(x))] | |
return tuple(x) | |
def get_same_padding(kernel_size: int or tuple[int, ...]) -> int or tuple[int, ...]: | |
if isinstance(kernel_size, tuple): | |
return tuple([get_same_padding(ks) for ks in kernel_size]) | |
else: | |
assert kernel_size % 2 > 0, f"kernel size {kernel_size} should be odd number" | |
return kernel_size // 2 | |