imw34531's picture
Upload folder using huggingface_hub
87e21d1 verified
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
import math
import os
import random
import re
import sys
from collections.abc import Iterable
from itertools import repeat
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image
from torch.utils.checkpoint import checkpoint, checkpoint_sequential
from torchvision import transforms as T
def _ntuple(n):
def parse(x):
if isinstance(x, Iterable) and not isinstance(x, str):
return x
return tuple(repeat(x, n))
return parse
to_1tuple = _ntuple(1)
to_2tuple = _ntuple(2)
def set_grad_checkpoint(model, gc_step=1):
assert isinstance(model, nn.Module)
def set_attr(module):
module.grad_checkpointing = True
module.grad_checkpointing_step = gc_step
model.apply(set_attr)
def set_fp32_attention(model):
assert isinstance(model, nn.Module)
def set_attr(module):
module.fp32_attention = True
model.apply(set_attr)
def auto_grad_checkpoint(module, *args, **kwargs):
if getattr(module, "grad_checkpointing", False):
if isinstance(module, Iterable):
gc_step = module[0].grad_checkpointing_step
return checkpoint_sequential(module, gc_step, *args, **kwargs)
else:
return checkpoint(module, *args, **kwargs)
return module(*args, **kwargs)
def checkpoint_sequential(functions, step, input, *args, **kwargs):
# Hack for keyword-only parameter in a python 2.7-compliant way
preserve = kwargs.pop("preserve_rng_state", True)
if kwargs:
raise ValueError("Unexpected keyword arguments: " + ",".join(arg for arg in kwargs))
def run_function(start, end, functions):
def forward(input):
for j in range(start, end + 1):
input = functions[j](input, *args)
return input
return forward
if isinstance(functions, torch.nn.Sequential):
functions = list(functions.children())
# the last chunk has to be non-volatile
end = -1
segment = len(functions) // step
for start in range(0, step * (segment - 1), step):
end = start + step - 1
input = checkpoint(run_function(start, end, functions), input, preserve_rng_state=preserve)
return run_function(end + 1, len(functions) - 1, functions)(input)
def window_partition(x, window_size):
"""
Partition into non-overlapping windows with padding if needed.
Args:
x (tensor): input tokens with [B, H, W, C].
window_size (int): window size.
Returns:
windows: windows after partition with [B * num_windows, window_size, window_size, C].
(Hp, Wp): padded height and width before partition
"""
B, H, W, C = x.shape
pad_h = (window_size - H % window_size) % window_size
pad_w = (window_size - W % window_size) % window_size
if pad_h > 0 or pad_w > 0:
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
Hp, Wp = H + pad_h, W + pad_w
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
return windows, (Hp, Wp)
def window_unpartition(windows, window_size, pad_hw, hw):
"""
Window unpartition into original sequences and removing padding.
Args:
x (tensor): input tokens with [B * num_windows, window_size, window_size, C].
window_size (int): window size.
pad_hw (Tuple): padded height and width (Hp, Wp).
hw (Tuple): original height and width (H, W) before padding.
Returns:
x: unpartitioned sequences with [B, H, W, C].
"""
Hp, Wp = pad_hw
H, W = hw
B = windows.shape[0] // (Hp * Wp // window_size // window_size)
x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
if Hp > H or Wp > W:
x = x[:, :H, :W, :].contiguous()
return x
def get_rel_pos(q_size, k_size, rel_pos):
"""
Get relative positional embeddings according to the relative positions of
query and key sizes.
Args:
q_size (int): size of query q.
k_size (int): size of key k.
rel_pos (Tensor): relative position embeddings (L, C).
Returns:
Extracted positional embeddings according to relative positions.
"""
max_rel_dist = int(2 * max(q_size, k_size) - 1)
# Interpolate rel pos if needed.
if rel_pos.shape[0] != max_rel_dist:
# Interpolate rel pos.
rel_pos_resized = F.interpolate(
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
size=max_rel_dist,
mode="linear",
)
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
else:
rel_pos_resized = rel_pos
# Scale the coords with short length if shapes for q and k are different.
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
return rel_pos_resized[relative_coords.long()]
def add_decomposed_rel_pos(attn, q, rel_pos_h, rel_pos_w, q_size, k_size):
"""
Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950
Args:
attn (Tensor): attention map.
q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
Returns:
attn (Tensor): attention map with added relative positional embeddings.
"""
q_h, q_w = q_size
k_h, k_w = k_size
Rh = get_rel_pos(q_h, k_h, rel_pos_h)
Rw = get_rel_pos(q_w, k_w, rel_pos_w)
B, _, dim = q.shape
r_q = q.reshape(B, q_h, q_w, dim)
rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
attn = (attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]).view(
B, q_h * q_w, k_h * k_w
)
return attn
def mean_flat(tensor):
return tensor.mean(dim=list(range(1, tensor.ndim)))
#################################################################################
# Token Masking and Unmasking #
#################################################################################
def get_mask(batch, length, mask_ratio, device, mask_type=None, data_info=None, extra_len=0):
"""
Get the binary mask for the input sequence.
Args:
- batch: batch size
- length: sequence length
- mask_ratio: ratio of tokens to mask
- data_info: dictionary with info for reconstruction
return:
mask_dict with following keys:
- mask: binary mask, 0 is keep, 1 is remove
- ids_keep: indices of tokens to keep
- ids_restore: indices to restore the original order
"""
assert mask_type in ["random", "fft", "laplacian", "group"]
mask = torch.ones([batch, length], device=device)
len_keep = int(length * (1 - mask_ratio)) - extra_len
if mask_type == "random" or mask_type == "group":
noise = torch.rand(batch, length, device=device) # noise in [0, 1]
ids_shuffle = torch.argsort(noise, dim=1) # ascend: small is keep, large is remove
ids_restore = torch.argsort(ids_shuffle, dim=1)
# keep the first subset
ids_keep = ids_shuffle[:, :len_keep]
ids_removed = ids_shuffle[:, len_keep:]
elif mask_type in ["fft", "laplacian"]:
if "strength" in data_info:
strength = data_info["strength"]
else:
N = data_info["N"][0]
img = data_info["ori_img"]
# 获取原图的尺寸信息
_, C, H, W = img.shape
if mask_type == "fft":
# 对图片进行reshape,将其变为patch (3, H/N, N, W/N, N)
reshaped_image = img.reshape((batch, -1, H // N, N, W // N, N))
fft_image = torch.fft.fftn(reshaped_image, dim=(3, 5))
# 取绝对值并求和获取频率强度
strength = torch.sum(torch.abs(fft_image), dim=(1, 3, 5)).reshape(
(
batch,
-1,
)
)
elif type == "laplacian":
laplacian_kernel = torch.tensor([[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]], dtype=torch.float32).reshape(
1, 1, 3, 3
)
laplacian_kernel = laplacian_kernel.repeat(C, 1, 1, 1)
# 对图片进行reshape,将其变为patch (3, H/N, N, W/N, N)
reshaped_image = img.reshape(-1, C, H // N, N, W // N, N).permute(0, 2, 4, 1, 3, 5).reshape(-1, C, N, N)
laplacian_response = F.conv2d(reshaped_image, laplacian_kernel, padding=1, groups=C)
strength = laplacian_response.sum(dim=[1, 2, 3]).reshape(
(
batch,
-1,
)
)
# 对频率强度进行归一化,然后使用torch.multinomial进行采样
probabilities = strength / (strength.max(dim=1)[0][:, None] + 1e-5)
ids_shuffle = torch.multinomial(probabilities.clip(1e-5, 1), length, replacement=False)
ids_keep = ids_shuffle[:, :len_keep]
ids_restore = torch.argsort(ids_shuffle, dim=1)
ids_removed = ids_shuffle[:, len_keep:]
mask[:, :len_keep] = 0
mask = torch.gather(mask, dim=1, index=ids_restore)
return {"mask": mask, "ids_keep": ids_keep, "ids_restore": ids_restore, "ids_removed": ids_removed}
def mask_out_token(x, ids_keep, ids_removed=None):
"""
Mask out the tokens specified by ids_keep.
Args:
- x: input sequence, [N, L, D]
- ids_keep: indices of tokens to keep
return:
- x_masked: masked sequence
"""
N, L, D = x.shape # batch, length, dim
x_remain = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))
if ids_removed is not None:
x_masked = torch.gather(x, dim=1, index=ids_removed.unsqueeze(-1).repeat(1, 1, D))
return x_remain, x_masked
else:
return x_remain
def mask_tokens(x, mask_ratio):
"""
Perform per-sample random masking by per-sample shuffling.
Per-sample shuffling is done by argsort random noise.
x: [N, L, D], sequence
"""
N, L, D = x.shape # batch, length, dim
len_keep = int(L * (1 - mask_ratio))
noise = torch.rand(N, L, device=x.device) # noise in [0, 1]
# sort noise for each sample
ids_shuffle = torch.argsort(noise, dim=1) # ascend: small is keep, large is remove
ids_restore = torch.argsort(ids_shuffle, dim=1)
# keep the first subset
ids_keep = ids_shuffle[:, :len_keep]
x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))
# generate the binary mask: 0 is keep, 1 is remove
mask = torch.ones([N, L], device=x.device)
mask[:, :len_keep] = 0
mask = torch.gather(mask, dim=1, index=ids_restore)
return x_masked, mask, ids_restore
def unmask_tokens(x, ids_restore, mask_token):
# x: [N, T, D] if extras == 0 (i.e., no cls token) else x: [N, T+1, D]
mask_tokens = mask_token.repeat(x.shape[0], ids_restore.shape[1] - x.shape[1], 1)
x = torch.cat([x, mask_tokens], dim=1)
x = torch.gather(x, dim=1, index=ids_restore.unsqueeze(-1).repeat(1, 1, x.shape[2])) # unshuffle
return x
# Parse 'None' to None and others to float value
def parse_float_none(s):
assert isinstance(s, str)
return None if s == "None" else float(s)
# ----------------------------------------------------------------------------
# Parse a comma separated list of numbers or ranges and return a list of ints.
# Example: '1,2,5-10' returns [1, 2, 5, 6, 7, 8, 9, 10]
def parse_int_list(s):
if isinstance(s, list):
return s
ranges = []
range_re = re.compile(r"^(\d+)-(\d+)$")
for p in s.split(","):
m = range_re.match(p)
if m:
ranges.extend(range(int(m.group(1)), int(m.group(2)) + 1))
else:
ranges.append(int(p))
return ranges
def init_processes(fn, args):
"""Initialize the distributed environment."""
os.environ["MASTER_ADDR"] = args.master_address
os.environ["MASTER_PORT"] = str(random.randint(2000, 6000))
print(f'MASTER_ADDR = {os.environ["MASTER_ADDR"]}')
print(f'MASTER_PORT = {os.environ["MASTER_PORT"]}')
torch.cuda.set_device(args.local_rank)
dist.init_process_group(backend="nccl", init_method="env://", rank=args.global_rank, world_size=args.global_size)
fn(args)
if args.global_size > 1:
cleanup()
def mprint(*args, **kwargs):
"""
Print only from rank 0.
"""
if dist.get_rank() == 0:
print(*args, **kwargs)
def cleanup():
"""
End DDP training.
"""
dist.barrier()
mprint("Done!")
dist.barrier()
dist.destroy_process_group()
# ----------------------------------------------------------------------------
# logging info.
class Logger:
"""
Redirect stderr to stdout, optionally print stdout to a file,
and optionally force flushing on both stdout and the file.
"""
def __init__(self, file_name=None, file_mode="w", should_flush=True):
self.file = None
if file_name is not None:
self.file = open(file_name, file_mode)
self.should_flush = should_flush
self.stdout = sys.stdout
self.stderr = sys.stderr
sys.stdout = self
sys.stderr = self
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
self.close()
def write(self, text):
"""Write text to stdout (and a file) and optionally flush."""
if len(text) == 0: # workaround for a bug in VSCode debugger: sys.stdout.write(''); sys.stdout.flush() => crash
return
if self.file is not None:
self.file.write(text)
self.stdout.write(text)
if self.should_flush:
self.flush()
def flush(self):
"""Flush written text to both stdout and a file, if open."""
if self.file is not None:
self.file.flush()
self.stdout.flush()
def close(self):
"""Flush, close possible files, and remove stdout/stderr mirroring."""
self.flush()
# if using multiple loggers, prevent closing in wrong order
if sys.stdout is self:
sys.stdout = self.stdout
if sys.stderr is self:
sys.stderr = self.stderr
if self.file is not None:
self.file.close()
class StackedRandomGenerator:
def __init__(self, device, seeds):
super().__init__()
self.generators = [torch.Generator(device).manual_seed(int(seed) % (1 << 32)) for seed in seeds]
def randn(self, size, **kwargs):
assert size[0] == len(self.generators)
return torch.stack([torch.randn(size[1:], generator=gen, **kwargs) for gen in self.generators])
def randn_like(self, input):
return self.randn(input.shape, dtype=input.dtype, layout=input.layout, device=input.device)
def randint(self, *args, size, **kwargs):
assert size[0] == len(self.generators)
return torch.stack([torch.randint(*args, size=size[1:], generator=gen, **kwargs) for gen in self.generators])
def prepare_prompt_ar(prompt, ratios, device="cpu", show=True):
# get aspect_ratio or ar
aspect_ratios = re.findall(r"--aspect_ratio\s+(\d+:\d+)", prompt)
ars = re.findall(r"--ar\s+(\d+:\d+)", prompt)
custom_hw = re.findall(r"--hw\s+(\d+:\d+)", prompt)
if show:
print("aspect_ratios:", aspect_ratios, "ars:", ars, "hws:", custom_hw)
prompt_clean = prompt.split("--aspect_ratio")[0].split("--ar")[0].split("--hw")[0]
if len(aspect_ratios) + len(ars) + len(custom_hw) == 0 and show:
print(
"Wrong prompt format. Set to default ar: 1. change your prompt into format '--ar h:w or --hw h:w' for correct generating"
)
if len(aspect_ratios) != 0:
ar = float(aspect_ratios[0].split(":")[0]) / float(aspect_ratios[0].split(":")[1])
elif len(ars) != 0:
ar = float(ars[0].split(":")[0]) / float(ars[0].split(":")[1])
else:
ar = 1.0
closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar))
if len(custom_hw) != 0:
custom_hw = [float(custom_hw[0].split(":")[0]), float(custom_hw[0].split(":")[1])]
else:
custom_hw = ratios[closest_ratio]
default_hw = ratios[closest_ratio]
prompt_show = f"prompt: {prompt_clean.strip()}\nSize: --ar {closest_ratio}, --bin hw {ratios[closest_ratio]}, --custom hw {custom_hw}"
return (
prompt_clean,
prompt_show,
torch.tensor(default_hw, device=device)[None],
torch.tensor([float(closest_ratio)], device=device)[None],
torch.tensor(custom_hw, device=device)[None],
)
def resize_and_crop_tensor(samples: torch.Tensor, new_width: int, new_height: int) -> torch.Tensor:
orig_height, orig_width = samples.shape[2], samples.shape[3]
# Check if resizing is needed
if orig_height != new_height or orig_width != new_width:
ratio = max(new_height / orig_height, new_width / orig_width)
resized_width = int(orig_width * ratio)
resized_height = int(orig_height * ratio)
# Resize
samples = F.interpolate(samples, size=(resized_height, resized_width), mode="bilinear", align_corners=False)
# Center Crop
start_x = (resized_width - new_width) // 2
end_x = start_x + new_width
start_y = (resized_height - new_height) // 2
end_y = start_y + new_height
samples = samples[:, :, start_y:end_y, start_x:end_x]
return samples
def resize_and_crop_img(img: Image, new_width, new_height):
orig_width, orig_height = img.size
ratio = max(new_width / orig_width, new_height / orig_height)
resized_width = int(orig_width * ratio)
resized_height = int(orig_height * ratio)
img = img.resize((resized_width, resized_height), Image.LANCZOS)
left = (resized_width - new_width) / 2
top = (resized_height - new_height) / 2
right = (resized_width + new_width) / 2
bottom = (resized_height + new_height) / 2
img = img.crop((left, top, right, bottom))
return img
def mask_feature(emb, mask):
if emb.shape[0] == 1:
keep_index = mask.sum().item()
return emb[:, :, :keep_index, :], keep_index
else:
masked_feature = emb * mask[:, None, :, None]
return masked_feature, emb.shape[2]
def val2list(x: list or tuple or any, repeat_time=1) -> list: # type: ignore
"""Repeat `val` for `repeat_time` times and return the list or val if list/tuple."""
if isinstance(x, (list, tuple)):
return list(x)
return [x for _ in range(repeat_time)]
def val2tuple(x: list or tuple or any, min_len: int = 1, idx_repeat: int = -1) -> tuple: # type: ignore
"""Return tuple with min_len by repeating element at idx_repeat."""
# convert to list first
x = val2list(x)
# repeat elements if necessary
if len(x) > 0:
x[idx_repeat:idx_repeat] = [x[idx_repeat] for _ in range(min_len - len(x))]
return tuple(x)
def get_same_padding(kernel_size: int or tuple[int, ...]) -> int or tuple[int, ...]:
if isinstance(kernel_size, tuple):
return tuple([get_same_padding(ks) for ks in kernel_size])
else:
assert kernel_size % 2 > 0, f"kernel size {kernel_size} should be odd number"
return kernel_size // 2