nvlabs-sana / scripts /inference_geneval.py
imw34531's picture
Upload folder using huggingface_hub
87e21d1 verified
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
import argparse
import json
import os
import random
import re
import time
import warnings
from dataclasses import dataclass, field
from typing import List, Optional
import datasets
import numpy as np
import pyrallis
import torch
from einops import rearrange
from PIL import Image
from torchvision.utils import _log_api_usage_once, make_grid, save_image
from tqdm import tqdm
warnings.filterwarnings("ignore") # ignore warning
from diffusion import DPMS, FlowEuler, SASolverSampler
from diffusion.data.datasets.utils import *
from diffusion.model.builder import build_model, get_tokenizer_and_text_encoder, get_vae, vae_decode
from diffusion.model.utils import prepare_prompt_ar
from diffusion.utils.config import SanaConfig
from diffusion.utils.logger import get_root_logger
# from diffusion.utils.misc import read_config
from tools.download import find_model
_CITATION = """\
@article{ghosh2024geneval,
title={Geneval: An object-focused framework for evaluating text-to-image alignment},
author={Ghosh, Dhruba and Hajishirzi, Hannaneh and Schmidt, Ludwig},
journal={Advances in Neural Information Processing Systems},
volume={36},
year={2024}
}
"""
_DESCRIPTION = (
"We demonstrate the advantages of evaluating text-to-image models using existing object detection methods, "
"to produce a fine-grained instance-level analysis of compositional capabilities."
)
_HOMEPAGE = "https://github.com/djghosh13/geneval"
_LICENSE = "MIT License (https://github.com/djghosh13/geneval/blob/main/LICENSE)"
DATA_URL = "https://raw.githubusercontent.com/djghosh13/geneval/main/prompts/evaluation_metadata.jsonl"
def load_jsonl(file_path: str):
data = []
with open(file_path) as file:
for line in file:
data.append(json.loads(line))
return data
@torch.no_grad()
def pil_image(
tensor,
**kwargs,
) -> Image:
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
_log_api_usage_once(save_image)
grid = make_grid(tensor, **kwargs)
# Add 0.5 after unnormalizing to [0, 255] to round to the nearest integer
ndarr = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
img = Image.fromarray(ndarr)
return img
class GenEvalConfig(datasets.BuilderConfig):
def __init__(self, max_dataset_size: int = -1, **kwargs):
super().__init__(
name=kwargs.get("name", "default"),
version=kwargs.get("version", "0.0.0"),
data_dir=kwargs.get("data_dir", None),
data_files=kwargs.get("data_files", None),
description=kwargs.get("description", None),
)
self.max_dataset_size = max_dataset_size
class GenEval(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("0.0.0")
BUILDER_CONFIG_CLASS = GenEvalConfig
BUILDER_CONFIGS = [GenEvalConfig(name="GenEval", version=VERSION, description="GenEval full prompt set")]
DEFAULT_CONFIG_NAME = "GenEval"
def _info(self):
features = datasets.Features(
{
"filename": datasets.Value("string"),
"prompt": datasets.Value("string"),
"tag": datasets.Value("string"),
# "include": datasets.Sequence(
# feature={"class": datasets.Value("string"), "count": datasets.Value("int32")},
# length=-1,
# ),
"include": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION
)
def _split_generators(self, dl_manager: datasets.download.DownloadManager):
meta_path = dl_manager.download(DATA_URL)
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"meta_path": meta_path})]
def _generate_examples(self, meta_path: str):
meta = load_jsonl(meta_path)
for i, row in enumerate(meta):
row["filename"] = f"{i:04d}"
if self.config.max_dataset_size > 0:
random.Random(0).shuffle(meta)
meta = meta[: self.config.max_dataset_size]
meta = sorted(meta, key=lambda x: x["filename"])
for i, row in enumerate(meta):
yield i, row
def set_env(seed=0, latent_size=256):
torch.manual_seed(seed)
torch.set_grad_enabled(False)
for _ in range(30):
torch.randn(1, 4, latent_size, latent_size)
@torch.inference_mode()
def visualize(sample_steps, cfg_scale, pag_scale):
generator = torch.Generator(device=device).manual_seed(args.seed)
tqdm_desc = f"{save_root.split('/')[-1]} Using GPU: {args.gpu_id}: {args.start_index}-{args.end_index}"
for index, metadata in tqdm(list(enumerate(metadatas)), desc=tqdm_desc, position=args.gpu_id, leave=True):
metadata["include"] = (
metadata["include"] if isinstance(metadata["include"], list) else eval(metadata["include"])
)
index += args.start_index
outpath = os.path.join(save_root, f"{index:0>5}")
os.makedirs(outpath, exist_ok=True)
sample_path = os.path.join(outpath, "samples")
os.makedirs(sample_path, exist_ok=True)
prompt = metadata["prompt"]
# print(f"Prompt ({index: >3}/{len(metadatas)}): '{prompt}'")
with open(os.path.join(outpath, "metadata.jsonl"), "w") as fp:
json.dump(metadata, fp)
sample_count = 0
with torch.no_grad():
all_samples = list()
for _ in range((args.n_samples + batch_size - 1) // batch_size):
# Generate images
prompts, hw, ar = (
[],
torch.tensor([[args.image_size, args.image_size]], dtype=torch.float, device=device).repeat(
batch_size, 1
),
torch.tensor([[1.0]], device=device).repeat(batch_size, 1),
)
for _ in range(batch_size):
prompts.append(prepare_prompt_ar(prompt, base_ratios, device=device, show=False)[0].strip())
latent_size_h, latent_size_w = latent_size, latent_size
# check exists
save_path = os.path.join(sample_path, f"{sample_count:05}.png")
if os.path.exists(save_path):
# make sure the noise is totally same
torch.randn(
batch_size,
config.vae.vae_latent_dim,
latent_size,
latent_size,
device=device,
generator=generator,
)
continue
# prepare text feature
if not config.text_encoder.chi_prompt:
max_length_all = config.text_encoder.model_max_length
prompts_all = prompts
else:
chi_prompt = "\n".join(config.text_encoder.chi_prompt)
prompts_all = [chi_prompt + prompt for prompt in prompts]
num_chi_prompt_tokens = len(tokenizer.encode(chi_prompt))
max_length_all = (
num_chi_prompt_tokens + config.text_encoder.model_max_length - 2
) # magic number 2: [bos], [_]
caption_token = tokenizer(
prompts_all, max_length=max_length_all, padding="max_length", truncation=True, return_tensors="pt"
).to(device)
select_index = [0] + list(range(-config.text_encoder.model_max_length + 1, 0)) # 第一个bos和最后N-1个
caption_embs = text_encoder(caption_token.input_ids, caption_token.attention_mask)[0][:, None][
:, :, select_index
]
emb_masks = caption_token.attention_mask[:, select_index]
null_y = null_caption_embs.repeat(len(prompts), 1, 1)[:, None]
# start sampling
with torch.no_grad():
n = len(prompts)
z = torch.randn(
n, config.vae.vae_latent_dim, latent_size, latent_size, device=device, generator=generator
)
model_kwargs = dict(data_info={"img_hw": hw, "aspect_ratio": ar}, mask=emb_masks)
if args.sampling_algo == "dpm-solver":
dpm_solver = DPMS(
model.forward_with_dpmsolver,
condition=caption_embs,
uncondition=null_y,
cfg_scale=cfg_scale,
model_kwargs=model_kwargs,
)
samples = dpm_solver.sample(
z,
steps=sample_steps,
order=2,
skip_type="time_uniform",
method="multistep",
)
elif args.sampling_algo == "sa-solver":
sa_solver = SASolverSampler(model.forward_with_dpmsolver, device=device)
samples = sa_solver.sample(
S=25,
batch_size=n,
shape=(config.vae.vae_latent_dim, latent_size_h, latent_size_w),
eta=1,
conditioning=caption_embs,
unconditional_conditioning=null_y,
unconditional_guidance_scale=cfg_scale,
model_kwargs=model_kwargs,
)[0]
elif args.sampling_algo == "flow_euler":
flow_solver = FlowEuler(
model,
condition=caption_embs,
uncondition=null_y,
cfg_scale=cfg_scale,
model_kwargs=model_kwargs,
)
samples = flow_solver.sample(
z,
steps=sample_steps,
)
elif args.sampling_algo == "flow_dpm-solver":
dpm_solver = DPMS(
model.forward_with_dpmsolver,
condition=caption_embs,
uncondition=null_y,
guidance_type=guidance_type,
cfg_scale=cfg_scale,
pag_scale=pag_scale,
pag_applied_layers=pag_applied_layers,
model_type="flow",
model_kwargs=model_kwargs,
schedule="FLOW",
interval_guidance=args.interval_guidance,
)
samples = dpm_solver.sample(
z,
steps=sample_steps,
order=2,
skip_type="time_uniform_flow",
method="multistep",
flow_shift=flow_shift,
)
else:
raise ValueError(f"{args.sampling_algo} is not defined")
samples = samples.to(weight_dtype)
samples = vae_decode(config.vae.vae_type, vae, samples)
torch.cuda.empty_cache()
for sample in samples:
save_path = os.path.join(sample_path, f"{sample_count:05}.png")
img = pil_image(sample, normalize=True, value_range=(-1, 1))
img.save(save_path)
sample_count += 1
if not args.skip_grid:
all_samples.append(samples)
if not args.skip_grid and all_samples:
# additionally, save as grid
grid = torch.stack(all_samples, 0)
grid = rearrange(grid, "n b c h w -> (n b) c h w")
grid = make_grid(grid, nrow=n_rows, normalize=True, value_range=(-1, 1))
# to image
grid = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
grid = Image.fromarray(grid.astype(np.uint8))
grid.save(os.path.join(outpath, f"grid.png"))
del grid
del all_samples
print("Done.")
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, help="config")
return parser.parse_known_args()[0]
@dataclass
class SanaInference(SanaConfig):
config: str = ""
dataset: str = "GenEval"
outdir: str = field(default="outputs", metadata={"help": "dir to write results to"})
n_samples: int = field(default=4, metadata={"help": "number of samples"})
batch_size: int = field(default=1, metadata={"help": "how many samples can be produced simultaneously"})
skip_grid: bool = field(default=False, metadata={"help": "skip saving grid"})
model_path: Optional[str] = field(default=None, metadata={"help": "Path to the model file (optional)"})
sample_nums: int = 533
cfg_scale: float = 4.5
pag_scale: float = 1.0
sampling_algo: str = field(
default="dpm-solver", metadata={"choices": ["dpm-solver", "sa-solver", "flow_euler", "flow_dpm-solver"]}
)
seed: int = 0
step: int = -1
add_label: str = ""
tar_and_del: bool = field(default=False, metadata={"help": "if tar and del the saved dir"})
exist_time_prefix: str = ""
gpu_id: int = 0
custom_image_size: Optional[int] = None
start_index: int = 0
end_index: int = 553
interval_guidance: List[float] = field(
default_factory=lambda: [0, 1], metadata={"help": "A list value, like [0, 1.] for use cfg"}
)
ablation_selections: Optional[List[float]] = field(
default=None, metadata={"help": "A list value, like [0, 1.] for ablation"}
)
ablation_key: Optional[str] = field(default=None, metadata={"choices": ["step", "cfg_scale", "pag_scale"]})
if_save_dirname: bool = field(
default=False,
metadata={"help": "if save img save dir name at wor_dir/metrics/tmp_time.time().txt for metric testing"},
)
if __name__ == "__main__":
args = parse_args()
config = args = pyrallis.parse(config_class=SanaInference, config_path=args.config)
# config = read_config(args.config)
args.image_size = config.model.image_size
if args.custom_image_size:
args.image_size = args.custom_image_size
print(f"custom_image_size: {args.image_size}")
set_env(args.seed, args.image_size // config.vae.vae_downsample_rate)
device = "cuda" if torch.cuda.is_available() else "cpu"
logger = get_root_logger()
n_rows = batch_size = args.n_samples
assert args.batch_size == 1, ValueError(f"{batch_size} > 1 is not available in GenEval")
# only support fixed latent size currently
latent_size = args.image_size // config.vae.vae_downsample_rate
max_sequence_length = config.text_encoder.model_max_length
pe_interpolation = config.model.pe_interpolation
micro_condition = config.model.micro_condition
flow_shift = config.scheduler.flow_shift
pag_applied_layers = config.model.pag_applied_layers
guidance_type = "classifier-free_PAG"
assert (
isinstance(args.interval_guidance, list)
and len(args.interval_guidance) == 2
and args.interval_guidance[0] <= args.interval_guidance[1]
)
args.interval_guidance = [max(0, args.interval_guidance[0]), min(1, args.interval_guidance[1])]
sample_steps_dict = {"dpm-solver": 20, "sa-solver": 25, "flow_dpm-solver": 20, "flow_euler": 28}
sample_steps = args.step if args.step != -1 else sample_steps_dict[args.sampling_algo]
if config.model.mixed_precision == "fp16":
weight_dtype = torch.float16
elif config.model.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
elif config.model.mixed_precision == "fp32":
weight_dtype = torch.float32
else:
raise ValueError(f"weigh precision {config.model.mixed_precision} is not defined")
logger.info(f"Inference with {weight_dtype}, default guidance_type: {guidance_type}, flow_shift: {flow_shift}")
vae = get_vae(config.vae.vae_type, config.vae.vae_pretrained, device).to(weight_dtype)
tokenizer, text_encoder = get_tokenizer_and_text_encoder(name=config.text_encoder.text_encoder_name, device=device)
null_caption_token = tokenizer(
"", max_length=max_sequence_length, padding="max_length", truncation=True, return_tensors="pt"
).to(device)
null_caption_embs = text_encoder(null_caption_token.input_ids, null_caption_token.attention_mask)[0]
# model setting
pred_sigma = getattr(config.scheduler, "pred_sigma", True)
learn_sigma = getattr(config.scheduler, "learn_sigma", True) and pred_sigma
model_kwargs = {
"input_size": latent_size,
"pe_interpolation": config.model.pe_interpolation,
"config": config,
"model_max_length": config.text_encoder.model_max_length,
"qk_norm": config.model.qk_norm,
"micro_condition": config.model.micro_condition,
"caption_channels": text_encoder.config.hidden_size,
"y_norm": config.text_encoder.y_norm,
"attn_type": config.model.attn_type,
"ffn_type": config.model.ffn_type,
"mlp_ratio": config.model.mlp_ratio,
"mlp_acts": list(config.model.mlp_acts),
"in_channels": config.vae.vae_latent_dim,
"y_norm_scale_factor": config.text_encoder.y_norm_scale_factor,
"use_pe": config.model.use_pe,
"linear_head_dim": config.model.linear_head_dim,
"pred_sigma": pred_sigma,
"learn_sigma": learn_sigma,
}
model = build_model(
config.model.model, use_fp32_attention=config.model.get("fp32_attention", False), **model_kwargs
).to(device)
logger.info(
f"{model.__class__.__name__}:{config.model.model}, Model Parameters: {sum(p.numel() for p in model.parameters()):,}"
)
logger.info("Generating sample from ckpt: %s" % args.model_path)
state_dict = find_model(args.model_path)
if "pos_embed" in state_dict["state_dict"]:
del state_dict["state_dict"]["pos_embed"]
missing, unexpected = model.load_state_dict(state_dict["state_dict"], strict=False)
logger.warning(f"Missing keys: {missing}")
logger.warning(f"Unexpected keys: {unexpected}")
model.eval().to(weight_dtype)
base_ratios = eval(f"ASPECT_RATIO_{args.image_size}_TEST")
args.sampling_algo = (
args.sampling_algo
if ("flow" not in args.model_path or args.sampling_algo == "flow_dpm-solver")
else "flow_euler"
)
work_dir = (
f"/{os.path.join(*args.model_path.split('/')[:-2])}"
if args.model_path.startswith("/")
else os.path.join(*args.model_path.split("/")[:-2])
)
# dataset
metadatas = datasets.load_dataset(
"scripts/inference_geneval.py", trust_remote_code=True, split=f"train[{args.start_index}:{args.end_index}]"
)
logger.info(f"Eval first {min(args.sample_nums, len(metadatas))}/{len(metadatas)} samples")
# save path
match = re.search(r".*epoch_(\d+).*step_(\d+).*", args.model_path)
epoch_name, step_name = match.groups() if match else ("unknown", "unknown")
img_save_dir = os.path.join(str(work_dir), "vis")
os.umask(0o000)
os.makedirs(img_save_dir, exist_ok=True)
logger.info(f"Sampler {args.sampling_algo}")
def create_save_root(args, dataset, epoch_name, step_name, sample_steps, guidance_type):
save_root = os.path.join(
img_save_dir,
# f"{datetime.now().date() if args.exist_time_prefix == '' else args.exist_time_prefix}_"
f"{dataset}_epoch{epoch_name}_step{step_name}_scale{args.cfg_scale}"
f"_step{sample_steps}_size{args.image_size}_bs{batch_size}_samp{args.sampling_algo}"
f"_seed{args.seed}_{str(weight_dtype).split('.')[-1]}",
)
if args.pag_scale != 1.0:
save_root = save_root.replace(f"scale{args.cfg_scale}", f"scale{args.cfg_scale}_pagscale{args.pag_scale}")
if flow_shift != 1.0:
save_root += f"_flowshift{flow_shift}"
if guidance_type != "classifier-free":
save_root += f"_{guidance_type}"
if args.interval_guidance[0] != 0 and args.interval_guidance[1] != 1:
save_root += f"_intervalguidance{args.interval_guidance[0]}{args.interval_guidance[1]}"
save_root += f"_imgnums{args.sample_nums}" + args.add_label
return save_root
def guidance_type_select(default_guidance_type, pag_scale, attn_type):
guidance_type = default_guidance_type
if not (pag_scale > 1.0 and attn_type == "linear"):
logger.info("Setting back to classifier-free")
guidance_type = "classifier-free"
return guidance_type
if args.ablation_selections and args.ablation_key:
for ablation_factor in args.ablation_selections:
setattr(args, args.ablation_key, eval(ablation_factor))
print(f"Setting {args.ablation_key}={eval(ablation_factor)}")
sample_steps = args.step if args.step != -1 else sample_steps_dict[args.sampling_algo]
guidance_type = guidance_type_select(guidance_type, args.pag_scale, config.model.attn_type)
save_root = create_save_root(args, args.dataset, epoch_name, step_name, sample_steps, guidance_type)
os.makedirs(save_root, exist_ok=True)
if args.if_save_dirname and args.gpu_id == 0:
# save at work_dir/metrics/tmp_xxx.txt for metrics testing
with open(f"{work_dir}/metrics/tmp_geneval_{time.time()}.txt", "w") as f:
print(f"save tmp file at {work_dir}/metrics/tmp_geneval_{time.time()}.txt")
f.write(os.path.basename(save_root))
logger.info(f"Inference with {weight_dtype}, guidance_type: {guidance_type}, flow_shift: {flow_shift}")
visualize(sample_steps, args.cfg_scale, args.pag_scale)
else:
guidance_type = guidance_type_select(guidance_type, args.pag_scale, config.model.attn_type)
logger.info(f"Inference with {weight_dtype}, guidance_type: {guidance_type}, flow_shift: {flow_shift}")
save_root = create_save_root(args, args.dataset, epoch_name, step_name, sample_steps, guidance_type)
os.makedirs(save_root, exist_ok=True)
if args.if_save_dirname and args.gpu_id == 0:
# save at work_dir/metrics/tmp_geneval_xxx.txt for metrics testing
with open(f"{work_dir}/metrics/tmp_geneval_{time.time()}.txt", "w") as f:
print(f"save tmp file at {work_dir}/metrics/tmp_geneval_{time.time()}.txt")
f.write(os.path.basename(save_root))
visualize(sample_steps, args.cfg_scale, args.pag_scale)