Spaces:
Configuration error
Configuration error
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# SPDX-License-Identifier: Apache-2.0 | |
""" | |
Functions for downloading pre-trained Sana models | |
""" | |
import argparse | |
import os | |
import torch | |
from termcolor import colored | |
from torchvision.datasets.utils import download_url | |
from sana.tools import hf_download_or_fpath | |
pretrained_models = {} | |
def find_model(model_name): | |
""" | |
Finds a pre-trained G.pt model, downloading it if necessary. Alternatively, loads a model from a local path. | |
""" | |
if model_name in pretrained_models: # Find/download our pre-trained G.pt checkpoints | |
return download_model(model_name) | |
# Load a custom Sana checkpoint: | |
model_name = hf_download_or_fpath(model_name) | |
assert os.path.isfile(model_name), f"Could not find Sana checkpoint at {model_name}" | |
print(colored(f"[Sana] Loading model from {model_name}", attrs=["bold"])) | |
return torch.load(model_name, map_location=lambda storage, loc: storage) | |
def download_model(model_name): | |
""" | |
Downloads a pre-trained Sana model from the web. | |
""" | |
assert model_name in pretrained_models | |
local_path = f"output/pretrained_models/{model_name}" | |
if not os.path.isfile(local_path): | |
hf_endpoint = os.environ.get("HF_ENDPOINT") | |
if hf_endpoint is None: | |
hf_endpoint = "https://huggingface.co" | |
os.makedirs("output/pretrained_models", exist_ok=True) | |
web_path = f"" | |
download_url(web_path, "output/pretrained_models/") | |
model = torch.load(local_path, map_location=lambda storage, loc: storage) | |
return model | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--model_names", nargs="+", type=str, default=pretrained_models) | |
args = parser.parse_args() | |
model_names = args.model_names | |
model_names = set(model_names) | |
# Download Sana checkpoints | |
for model in model_names: | |
download_model(model) | |
print("Done.") | |