# Copyright 2024 NVIDIA CORPORATION & AFFILIATES # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: Apache-2.0 import torch from .model import gaussian_diffusion as gd from .model.dpm_solver import DPM_Solver, NoiseScheduleFlow, NoiseScheduleVP, model_wrapper def DPMS( model, condition, uncondition, cfg_scale, pag_scale=1.0, pag_applied_layers=None, model_type="noise", # or "x_start" or "v" or "score", "flow" noise_schedule="linear", guidance_type="classifier-free", model_kwargs=None, diffusion_steps=1000, schedule="VP", interval_guidance=None, ): if pag_applied_layers is None: pag_applied_layers = [] if model_kwargs is None: model_kwargs = {} if interval_guidance is None: interval_guidance = [0, 1.0] betas = torch.tensor(gd.get_named_beta_schedule(noise_schedule, diffusion_steps)) ## 1. Define the noise schedule. if schedule == "VP": noise_schedule = NoiseScheduleVP(schedule="discrete", betas=betas) elif schedule == "FLOW": noise_schedule = NoiseScheduleFlow(schedule="discrete_flow") ## 2. Convert your discrete-time `model` to the continuous-time ## noise prediction model. Here is an example for a diffusion model ## `model` with the noise prediction type ("noise") . model_fn = model_wrapper( model, noise_schedule, model_type=model_type, model_kwargs=model_kwargs, guidance_type=guidance_type, pag_scale=pag_scale, pag_applied_layers=pag_applied_layers, condition=condition, unconditional_condition=uncondition, guidance_scale=cfg_scale, interval_guidance=interval_guidance, ) ## 3. Define dpm-solver and sample by multistep DPM-Solver. return DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++")