# Copyright 2024 NVIDIA CORPORATION & AFFILIATES # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: Apache-2.0 import torch from diffusers.models import AutoencoderKL from mmcv import Registry from termcolor import colored from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, T5EncoderModel, T5Tokenizer from transformers import logging as transformers_logging from diffusion.model.dc_ae.efficientvit.ae_model_zoo import DCAE_HF from diffusion.model.utils import set_fp32_attention, set_grad_checkpoint MODELS = Registry("models") transformers_logging.set_verbosity_error() def build_model(cfg, use_grad_checkpoint=False, use_fp32_attention=False, gc_step=1, **kwargs): if isinstance(cfg, str): cfg = dict(type=cfg) model = MODELS.build(cfg, default_args=kwargs) if use_grad_checkpoint: set_grad_checkpoint(model, gc_step=gc_step) if use_fp32_attention: set_fp32_attention(model) return model def get_tokenizer_and_text_encoder(name="T5", device="cuda"): text_encoder_dict = { "T5": "DeepFloyd/t5-v1_1-xxl", "T5-small": "google/t5-v1_1-small", "T5-base": "google/t5-v1_1-base", "T5-large": "google/t5-v1_1-large", "T5-xl": "google/t5-v1_1-xl", "T5-xxl": "google/t5-v1_1-xxl", "gemma-2b": "google/gemma-2b", "gemma-2b-it": "google/gemma-2b-it", "gemma-2-2b": "google/gemma-2-2b", "gemma-2-2b-it": "google/gemma-2-2b-it", "gemma-2-9b": "google/gemma-2-9b", "gemma-2-9b-it": "google/gemma-2-9b-it", "Qwen2-0.5B-Instruct": "Qwen/Qwen2-0.5B-Instruct", "Qwen2-1.5B-Instruct": "Qwen/Qwen2-1.5B-Instruct", } assert name in list(text_encoder_dict.keys()), f"not support this text encoder: {name}" if "T5" in name: tokenizer = T5Tokenizer.from_pretrained(text_encoder_dict[name]) text_encoder = T5EncoderModel.from_pretrained(text_encoder_dict[name], torch_dtype=torch.float16).to(device) elif "gemma" in name or "Qwen" in name: tokenizer = AutoTokenizer.from_pretrained(text_encoder_dict[name]) tokenizer.padding_side = "right" text_encoder = ( AutoModelForCausalLM.from_pretrained(text_encoder_dict[name], torch_dtype=torch.bfloat16) .get_decoder() .to(device) ) else: print("error load text encoder") exit() return tokenizer, text_encoder def get_vae(name, model_path, device="cuda"): if name == "sdxl" or name == "sd3": vae = AutoencoderKL.from_pretrained(model_path).to(device).to(torch.float16) if name == "sdxl": vae.config.shift_factor = 0 return vae elif "dc-ae" in name: print(colored(f"[DC-AE] Loading model from {model_path}", attrs=["bold"])) dc_ae = DCAE_HF.from_pretrained(model_path).to(device).eval() return dc_ae else: print("error load vae") exit() def vae_encode(name, vae, images, sample_posterior, device): if name == "sdxl" or name == "sd3": posterior = vae.encode(images.to(device)).latent_dist if sample_posterior: z = posterior.sample() else: z = posterior.mode() z = (z - vae.config.shift_factor) * vae.config.scaling_factor elif "dc-ae" in name: ae = vae z = ae.encode(images.to(device)) z = z * ae.cfg.scaling_factor else: print("error load vae") exit() return z def vae_decode(name, vae, latent): if name == "sdxl" or name == "sd3": latent = (latent.detach() / vae.config.scaling_factor) + vae.config.shift_factor samples = vae.decode(latent).sample elif "dc-ae" in name: ae = vae samples = ae.decode(latent.detach() / ae.cfg.scaling_factor) else: print("error load vae") exit() return samples