# Copyright 2024 NVIDIA CORPORATION & AFFILIATES # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: Apache-2.0 # This file is modified from https://github.com/PixArt-alpha/PixArt-sigma import math import os from typing import Optional import torch import torch.nn as nn import torch.nn.functional as F import xformers.ops from einops import rearrange from timm.models.vision_transformer import Attention as Attention_ from timm.models.vision_transformer import Mlp from transformers import AutoModelForCausalLM from diffusion.model.norms import RMSNorm from diffusion.model.utils import get_same_padding, to_2tuple def modulate(x, shift, scale): return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) def t2i_modulate(x, shift, scale): return x * (1 + scale) + shift class MultiHeadCrossAttention(nn.Module): def __init__(self, d_model, num_heads, attn_drop=0.0, proj_drop=0.0, qk_norm=False, **block_kwargs): super().__init__() assert d_model % num_heads == 0, "d_model must be divisible by num_heads" self.d_model = d_model self.num_heads = num_heads self.head_dim = d_model // num_heads self.q_linear = nn.Linear(d_model, d_model) self.kv_linear = nn.Linear(d_model, d_model * 2) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(d_model, d_model) self.proj_drop = nn.Dropout(proj_drop) if qk_norm: # not used for now self.q_norm = RMSNorm(d_model, scale_factor=1.0, eps=1e-6) self.k_norm = RMSNorm(d_model, scale_factor=1.0, eps=1e-6) else: self.q_norm = nn.Identity() self.k_norm = nn.Identity() def forward(self, x, cond, mask=None): # query: img tokens; key/value: condition; mask: if padding tokens B, N, C = x.shape q = self.q_linear(x) kv = self.kv_linear(cond).view(1, -1, 2, C) k, v = kv.unbind(2) q = self.q_norm(q).view(1, -1, self.num_heads, self.head_dim) k = self.k_norm(k).view(1, -1, self.num_heads, self.head_dim) v = v.view(1, -1, self.num_heads, self.head_dim) attn_bias = None if mask is not None: attn_bias = xformers.ops.fmha.BlockDiagonalMask.from_seqlens([N] * B, mask) x = xformers.ops.memory_efficient_attention(q, k, v, p=self.attn_drop.p, attn_bias=attn_bias) x = x.view(B, -1, C) x = self.proj(x) x = self.proj_drop(x) return x class LiteLA(Attention_): r"""Lightweight linear attention""" PAD_VAL = 1 def __init__( self, in_dim: int, out_dim: int, heads: Optional[int] = None, heads_ratio: float = 1.0, dim=32, eps=1e-15, use_bias=False, qk_norm=False, norm_eps=1e-5, ): heads = heads or int(out_dim // dim * heads_ratio) super().__init__(in_dim, num_heads=heads, qkv_bias=use_bias) self.in_dim = in_dim self.out_dim = out_dim self.heads = heads self.dim = out_dim // heads # TODO: need some change self.eps = eps self.kernel_func = nn.ReLU(inplace=False) if qk_norm: self.q_norm = RMSNorm(in_dim, scale_factor=1.0, eps=norm_eps) self.k_norm = RMSNorm(in_dim, scale_factor=1.0, eps=norm_eps) else: self.q_norm = nn.Identity() self.k_norm = nn.Identity() @torch.amp.autocast("cuda", enabled=os.environ.get("AUTOCAST_LINEAR_ATTN", False) == "true") def attn_matmul(self, q, k, v: torch.Tensor) -> torch.Tensor: # lightweight linear attention q = self.kernel_func(q) # B, h, h_d, N k = self.kernel_func(k) use_fp32_attention = getattr(self, "fp32_attention", False) # necessary for NAN loss if use_fp32_attention: q, k, v = q.float(), k.float(), v.float() v = F.pad(v, (0, 0, 0, 1), mode="constant", value=LiteLA.PAD_VAL) vk = torch.matmul(v, k) out = torch.matmul(vk, q) if out.dtype in [torch.float16, torch.bfloat16]: out = out.float() out = out[:, :, :-1] / (out[:, :, -1:] + self.eps) return out def forward(self, x: torch.Tensor, mask=None, HW=None, block_id=None) -> torch.Tensor: B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, C) q, k, v = qkv.unbind(2) # B, N, 3, C --> B, N, C dtype = q.dtype q = self.q_norm(q).transpose(-1, -2) # (B, N, C) -> (B, C, N) k = self.k_norm(k).transpose(-1, -2) # (B, N, C) -> (B, C, N) v = v.transpose(-1, -2) q = q.reshape(B, C // self.dim, self.dim, N) # (B, h, h_d, N) k = k.reshape(B, C // self.dim, self.dim, N).transpose(-1, -2) # (B, h, N, h_d) v = v.reshape(B, C // self.dim, self.dim, N) # (B, h, h_d, N) out = self.attn_matmul(q, k, v).to(dtype) out = out.view(B, C, N).permute(0, 2, 1) # B, N, C out = self.proj(out) if torch.get_autocast_gpu_dtype() == torch.float16: out = out.clip(-65504, 65504) return out @property def module_str(self) -> str: _str = type(self).__name__ + "(" eps = f"{self.eps:.1E}" _str += f"i={self.in_dim},o={self.out_dim},h={self.heads},d={self.dim},eps={eps}" return _str def __repr__(self): return f"EPS{self.eps}-" + super().__repr__() class PAGCFGIdentitySelfAttnProcessorLiteLA: r"""Self Attention with Perturbed Attention & CFG Guidance""" def __init__(self, attn): self.attn = attn def __call__(self, x: torch.Tensor, mask=None, HW=None, block_id=None) -> torch.Tensor: x_uncond, x_org, x_ptb = x.chunk(3) x_org = torch.cat([x_uncond, x_org]) B, N, C = x_org.shape qkv = self.attn.qkv(x_org).reshape(B, N, 3, C) # B, N, 3, C --> B, N, C q, k, v = qkv.unbind(2) dtype = q.dtype q = self.attn.q_norm(q).transpose(-1, -2) # (B, N, C) -> (B, C, N) k = self.attn.k_norm(k).transpose(-1, -2) # (B, N, C) -> (B, C, N) v = v.transpose(-1, -2) q = q.reshape(B, C // self.attn.dim, self.attn.dim, N) # (B, h, h_d, N) k = k.reshape(B, C // self.attn.dim, self.attn.dim, N).transpose(-1, -2) # (B, h, N, h_d) v = v.reshape(B, C // self.attn.dim, self.attn.dim, N) # (B, h, h_d, N) out = self.attn.attn_matmul(q, k, v).to(dtype) out = out.view(B, C, N).permute(0, 2, 1) # B, N, C out = self.attn.proj(out) # perturbed path (identity attention) v_weight = self.attn.qkv.weight[C * 2 : C * 3, :] # Shape: (dim, dim) if self.attn.qkv.bias: v_bias = self.attn.qkv.bias[C * 2 : C * 3] # Shape: (dim,) x_ptb = (torch.matmul(x_ptb, v_weight.t()) + v_bias).to(dtype) else: x_ptb = torch.matmul(x_ptb, v_weight.t()).to(dtype) x_ptb = self.attn.proj(x_ptb) out = torch.cat([out, x_ptb]) if torch.get_autocast_gpu_dtype() == torch.float16: out = out.clip(-65504, 65504) return out class PAGIdentitySelfAttnProcessorLiteLA: r"""Self Attention with Perturbed Attention Guidance""" def __init__(self, attn): self.attn = attn def __call__(self, x: torch.Tensor, mask=None, HW=None, block_id=None) -> torch.Tensor: x_org, x_ptb = x.chunk(2) B, N, C = x_org.shape qkv = self.attn.qkv(x_org).reshape(B, N, 3, C) # B, N, 3, C --> B, N, C q, k, v = qkv.unbind(2) dtype = q.dtype q = self.attn.q_norm(q).transpose(-1, -2) # (B, N, C) -> (B, C, N) k = self.attn.k_norm(k).transpose(-1, -2) # (B, N, C) -> (B, C, N) v = v.transpose(-1, -2) q = q.reshape(B, C // self.attn.dim, self.attn.dim, N) # (B, h, h_d, N) k = k.reshape(B, C // self.attn.dim, self.attn.dim, N).transpose(-1, -2) # (B, h, N, h_d) v = v.reshape(B, C // self.attn.dim, self.attn.dim, N) # (B, h, h_d, N) out = self.attn.attn_matmul(q, k, v).to(dtype) out = out.view(B, C, N).permute(0, 2, 1) # B, N, C out = self.attn.proj(out) # perturbed path (identity attention) v_weight = self.attn.qkv.weight[C * 2 : C * 3, :] # Shape: (dim, dim) if self.attn.qkv.bias: v_bias = self.attn.qkv.bias[C * 2 : C * 3] # Shape: (dim,) x_ptb = (torch.matmul(x_ptb, v_weight.t()) + v_bias).to(dtype) else: x_ptb = torch.matmul(x_ptb, v_weight.t()).to(dtype) x_ptb = self.attn.proj(x_ptb) out = torch.cat([out, x_ptb]) if torch.get_autocast_gpu_dtype() == torch.float16: out = out.clip(-65504, 65504) return out class SelfAttnProcessorLiteLA: r"""Self Attention with Lite Linear Attention""" def __init__(self, attn): self.attn = attn def __call__(self, x: torch.Tensor, mask=None, HW=None, block_id=None) -> torch.Tensor: B, N, C = x.shape if HW is None: H = W = int(N**0.5) else: H, W = HW qkv = self.attn.qkv(x).reshape(B, N, 3, C) # B, N, 3, C --> B, N, C q, k, v = qkv.unbind(2) dtype = q.dtype q = self.attn.q_norm(q).transpose(-1, -2) # (B, N, C) -> (B, C, N) k = self.attn.k_norm(k).transpose(-1, -2) # (B, N, C) -> (B, C, N) v = v.transpose(-1, -2) q = q.reshape(B, C // self.attn.dim, self.attn.dim, N) # (B, h, h_d, N) k = k.reshape(B, C // self.attn.dim, self.attn.dim, N).transpose(-1, -2) # (B, h, N, h_d) v = v.reshape(B, C // self.attn.dim, self.attn.dim, N) # (B, h, h_d, N) out = self.attn.attn_matmul(q, k, v).to(dtype) out = out.view(B, C, N).permute(0, 2, 1) # B, N, C out = self.attn.proj(out) if torch.get_autocast_gpu_dtype() == torch.float16: out = out.clip(-65504, 65504) return out class FlashAttention(Attention_): """Multi-head Flash Attention block with qk norm.""" def __init__( self, dim, num_heads=8, qkv_bias=True, qk_norm=False, **block_kwargs, ): """ Args: dim (int): Number of input channels. num_heads (int): Number of attention heads. qkv_bias (bool: If True, add a learnable bias to query, key, value. """ super().__init__(dim, num_heads=num_heads, qkv_bias=qkv_bias, **block_kwargs) if qk_norm: self.q_norm = nn.LayerNorm(dim) self.k_norm = nn.LayerNorm(dim) else: self.q_norm = nn.Identity() self.k_norm = nn.Identity() def forward(self, x, mask=None, HW=None, block_id=None): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, C) q, k, v = qkv.unbind(2) dtype = q.dtype q = self.q_norm(q) k = self.k_norm(k) q = q.reshape(B, N, self.num_heads, C // self.num_heads).to(dtype) k = k.reshape(B, N, self.num_heads, C // self.num_heads).to(dtype) v = v.reshape(B, N, self.num_heads, C // self.num_heads).to(dtype) use_fp32_attention = getattr(self, "fp32_attention", False) # necessary for NAN loss if use_fp32_attention: q, k, v = q.float(), k.float(), v.float() attn_bias = None if mask is not None: attn_bias = torch.zeros([B * self.num_heads, q.shape[1], k.shape[1]], dtype=q.dtype, device=q.device) attn_bias.masked_fill_(mask.squeeze(1).repeat(self.num_heads, 1, 1) == 0, float("-inf")) x = xformers.ops.memory_efficient_attention(q, k, v, p=self.attn_drop.p, attn_bias=attn_bias) x = x.view(B, N, C) x = self.proj(x) x = self.proj_drop(x) if torch.get_autocast_gpu_dtype() == torch.float16: x = x.clip(-65504, 65504) return x ################################################################################# # AMP attention with fp32 softmax to fix loss NaN problem during training # ################################################################################# class Attention(Attention_): def forward(self, x, HW=None): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) # B,N,3,H,C -> B,H,N,C q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) use_fp32_attention = getattr(self, "fp32_attention", False) if use_fp32_attention: q, k = q.float(), k.float() with torch.cuda.amp.autocast(enabled=not use_fp32_attention): attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class FinalLayer(nn.Module): """ The final layer of Sana. """ def __init__(self, hidden_size, patch_size, out_channels): super().__init__() self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True) self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True)) def forward(self, x, c): shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) x = modulate(self.norm_final(x), shift, scale) x = self.linear(x) return x class T2IFinalLayer(nn.Module): """ The final layer of Sana. """ def __init__(self, hidden_size, patch_size, out_channels): super().__init__() self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True) self.scale_shift_table = nn.Parameter(torch.randn(2, hidden_size) / hidden_size**0.5) self.out_channels = out_channels def forward(self, x, t): shift, scale = (self.scale_shift_table[None] + t[:, None]).chunk(2, dim=1) x = t2i_modulate(self.norm_final(x), shift, scale) x = self.linear(x) return x class MaskFinalLayer(nn.Module): """ The final layer of Sana. """ def __init__(self, final_hidden_size, c_emb_size, patch_size, out_channels): super().__init__() self.norm_final = nn.LayerNorm(final_hidden_size, elementwise_affine=False, eps=1e-6) self.linear = nn.Linear(final_hidden_size, patch_size * patch_size * out_channels, bias=True) self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(c_emb_size, 2 * final_hidden_size, bias=True)) def forward(self, x, t): shift, scale = self.adaLN_modulation(t).chunk(2, dim=1) x = modulate(self.norm_final(x), shift, scale) x = self.linear(x) return x class DecoderLayer(nn.Module): """ The final layer of Sana. """ def __init__(self, hidden_size, decoder_hidden_size): super().__init__() self.norm_decoder = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.linear = nn.Linear(hidden_size, decoder_hidden_size, bias=True) self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True)) def forward(self, x, t): shift, scale = self.adaLN_modulation(t).chunk(2, dim=1) x = modulate(self.norm_decoder(x), shift, scale) x = self.linear(x) return x ################################################################################# # Embedding Layers for Timesteps and Class Labels # ################################################################################# class TimestepEmbedder(nn.Module): """ Embeds scalar timesteps into vector representations. """ def __init__(self, hidden_size, frequency_embedding_size=256): super().__init__() self.mlp = nn.Sequential( nn.Linear(frequency_embedding_size, hidden_size, bias=True), nn.SiLU(), nn.Linear(hidden_size, hidden_size, bias=True), ) self.frequency_embedding_size = frequency_embedding_size @staticmethod def timestep_embedding(t, dim, max_period=10000): """ Create sinusoidal timestep embeddings. :param t: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an (N, D) Tensor of positional embeddings. """ # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py half = dim // 2 freqs = torch.exp( -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half ) args = t[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) return embedding def forward(self, t): t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(self.dtype) t_emb = self.mlp(t_freq) return t_emb @property def dtype(self): try: return next(self.parameters()).dtype except StopIteration: return torch.float32 class SizeEmbedder(TimestepEmbedder): """ Embeds scalar timesteps into vector representations. """ def __init__(self, hidden_size, frequency_embedding_size=256): super().__init__(hidden_size=hidden_size, frequency_embedding_size=frequency_embedding_size) self.mlp = nn.Sequential( nn.Linear(frequency_embedding_size, hidden_size, bias=True), nn.SiLU(), nn.Linear(hidden_size, hidden_size, bias=True), ) self.frequency_embedding_size = frequency_embedding_size self.outdim = hidden_size def forward(self, s, bs): if s.ndim == 1: s = s[:, None] assert s.ndim == 2 if s.shape[0] != bs: s = s.repeat(bs // s.shape[0], 1) assert s.shape[0] == bs b, dims = s.shape[0], s.shape[1] s = rearrange(s, "b d -> (b d)") s_freq = self.timestep_embedding(s, self.frequency_embedding_size).to(self.dtype) s_emb = self.mlp(s_freq) s_emb = rearrange(s_emb, "(b d) d2 -> b (d d2)", b=b, d=dims, d2=self.outdim) return s_emb @property def dtype(self): try: return next(self.parameters()).dtype except StopIteration: return torch.float32 class LabelEmbedder(nn.Module): """ Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. """ def __init__(self, num_classes, hidden_size, dropout_prob): super().__init__() use_cfg_embedding = dropout_prob > 0 self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size) self.num_classes = num_classes self.dropout_prob = dropout_prob def token_drop(self, labels, force_drop_ids=None): """ Drops labels to enable classifier-free guidance. """ if force_drop_ids is None: drop_ids = torch.rand(labels.shape[0]).cuda() < self.dropout_prob else: drop_ids = force_drop_ids == 1 labels = torch.where(drop_ids, self.num_classes, labels) return labels def forward(self, labels, train, force_drop_ids=None): use_dropout = self.dropout_prob > 0 if (train and use_dropout) or (force_drop_ids is not None): labels = self.token_drop(labels, force_drop_ids) embeddings = self.embedding_table(labels) return embeddings class CaptionEmbedder(nn.Module): """ Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. """ def __init__( self, in_channels, hidden_size, uncond_prob, act_layer=nn.GELU(approximate="tanh"), token_num=120, ): super().__init__() self.y_proj = Mlp( in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size, act_layer=act_layer, drop=0 ) self.register_buffer("y_embedding", nn.Parameter(torch.randn(token_num, in_channels) / in_channels**0.5)) self.uncond_prob = uncond_prob def initialize_gemma_params(self, model_name="google/gemma-2b-it"): num_layers = len(self.custom_gemma_layers) text_encoder = AutoModelForCausalLM.from_pretrained(model_name).get_decoder() pretrained_layers = text_encoder.layers[-num_layers:] for custom_layer, pretrained_layer in zip(self.custom_gemma_layers, pretrained_layers): info = custom_layer.load_state_dict(pretrained_layer.state_dict(), strict=False) print(f"**** {info} ****") print(f"**** Initialized {num_layers} Gemma layers from pretrained model: {model_name} ****") def token_drop(self, caption, force_drop_ids=None): """ Drops labels to enable classifier-free guidance. """ if force_drop_ids is None: drop_ids = torch.rand(caption.shape[0]).cuda() < self.uncond_prob else: drop_ids = force_drop_ids == 1 caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption) return caption def forward(self, caption, train, force_drop_ids=None, mask=None): if train: assert caption.shape[2:] == self.y_embedding.shape use_dropout = self.uncond_prob > 0 if (train and use_dropout) or (force_drop_ids is not None): caption = self.token_drop(caption, force_drop_ids) caption = self.y_proj(caption) return caption class CaptionEmbedderDoubleBr(nn.Module): """ Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. """ def __init__(self, in_channels, hidden_size, uncond_prob, act_layer=nn.GELU(approximate="tanh"), token_num=120): super().__init__() self.proj = Mlp( in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size, act_layer=act_layer, drop=0 ) self.embedding = nn.Parameter(torch.randn(1, in_channels) / 10**0.5) self.y_embedding = nn.Parameter(torch.randn(token_num, in_channels) / 10**0.5) self.uncond_prob = uncond_prob def token_drop(self, global_caption, caption, force_drop_ids=None): """ Drops labels to enable classifier-free guidance. """ if force_drop_ids is None: drop_ids = torch.rand(global_caption.shape[0]).cuda() < self.uncond_prob else: drop_ids = force_drop_ids == 1 global_caption = torch.where(drop_ids[:, None], self.embedding, global_caption) caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption) return global_caption, caption def forward(self, caption, train, force_drop_ids=None): assert caption.shape[2:] == self.y_embedding.shape global_caption = caption.mean(dim=2).squeeze() use_dropout = self.uncond_prob > 0 if (train and use_dropout) or (force_drop_ids is not None): global_caption, caption = self.token_drop(global_caption, caption, force_drop_ids) y_embed = self.proj(global_caption) return y_embed, caption class PatchEmbed(nn.Module): """2D Image to Patch Embedding""" def __init__( self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, kernel_size=None, padding=0, norm_layer=None, flatten=True, bias=True, ): super().__init__() kernel_size = kernel_size or patch_size img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) self.img_size = img_size self.patch_size = patch_size self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.num_patches = self.grid_size[0] * self.grid_size[1] self.flatten = flatten if not padding and kernel_size % 2 > 0: padding = get_same_padding(kernel_size) self.proj = nn.Conv2d( in_chans, embed_dim, kernel_size=kernel_size, stride=patch_size, padding=padding, bias=bias ) self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() def forward(self, x): B, C, H, W = x.shape assert (H == self.img_size[0], f"Input image height ({H}) doesn't match model ({self.img_size[0]}).") assert (W == self.img_size[1], f"Input image width ({W}) doesn't match model ({self.img_size[1]}).") x = self.proj(x) if self.flatten: x = x.flatten(2).transpose(1, 2) # BCHW -> BNC x = self.norm(x) return x class PatchEmbedMS(nn.Module): """2D Image to Patch Embedding""" def __init__( self, patch_size=16, in_chans=3, embed_dim=768, kernel_size=None, padding=0, norm_layer=None, flatten=True, bias=True, ): super().__init__() kernel_size = kernel_size or patch_size patch_size = to_2tuple(patch_size) self.patch_size = patch_size self.flatten = flatten if not padding and kernel_size % 2 > 0: padding = get_same_padding(kernel_size) self.proj = nn.Conv2d( in_chans, embed_dim, kernel_size=kernel_size, stride=patch_size, padding=padding, bias=bias ) self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() def forward(self, x): x = self.proj(x) if self.flatten: x = x.flatten(2).transpose(1, 2) # BCHW -> BNC x = self.norm(x) return x