File size: 6,776 Bytes
2b5b9ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchlibrosa.stft import Spectrogram, LogmelFilterBank

def get_audio_encoder(name: str):
    if name == "Cnn14":
        return Cnn14
    else:
        raise Exception('The audio encoder name {} is incorrect or not supported'.format(name))


class ConvBlock(nn.Module):
    def __init__(self, in_channels, out_channels):
        
        super(ConvBlock, self).__init__()
        
        self.conv1 = nn.Conv2d(in_channels=in_channels, 
                              out_channels=out_channels,
                              kernel_size=(3, 3), stride=(1, 1),
                              padding=(1, 1), bias=False)
                              
        self.conv2 = nn.Conv2d(in_channels=out_channels, 
                              out_channels=out_channels,
                              kernel_size=(3, 3), stride=(1, 1),
                              padding=(1, 1), bias=False)
                              
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.bn2 = nn.BatchNorm2d(out_channels)

        
    def forward(self, input, pool_size=(2, 2), pool_type='avg'):
        
        x = input
        x = F.relu_(self.bn1(self.conv1(x)))
        x = F.relu_(self.bn2(self.conv2(x)))
        if pool_type == 'max':
            x = F.max_pool2d(x, kernel_size=pool_size)
        elif pool_type == 'avg':
            x = F.avg_pool2d(x, kernel_size=pool_size)
        elif pool_type == 'avg+max':
            x1 = F.avg_pool2d(x, kernel_size=pool_size)
            x2 = F.max_pool2d(x, kernel_size=pool_size)
            x = x1 + x2
        else:
            raise Exception('Incorrect argument!')
        
        return x


class ConvBlock5x5(nn.Module):
    def __init__(self, in_channels, out_channels):
        
        super(ConvBlock5x5, self).__init__()
        
        self.conv1 = nn.Conv2d(in_channels=in_channels, 
                              out_channels=out_channels,
                              kernel_size=(5, 5), stride=(1, 1),
                              padding=(2, 2), bias=False)
                              
        self.bn1 = nn.BatchNorm2d(out_channels)

        
    def forward(self, input, pool_size=(2, 2), pool_type='avg'):
        
        x = input
        x = F.relu_(self.bn1(self.conv1(x)))
        if pool_type == 'max':
            x = F.max_pool2d(x, kernel_size=pool_size)
        elif pool_type == 'avg':
            x = F.avg_pool2d(x, kernel_size=pool_size)
        elif pool_type == 'avg+max':
            x1 = F.avg_pool2d(x, kernel_size=pool_size)
            x2 = F.max_pool2d(x, kernel_size=pool_size)
            x = x1 + x2
        else:
            raise Exception('Incorrect argument!')
        
        return x


class AttBlock(nn.Module):
    def __init__(self, n_in, n_out, activation='linear', temperature=1.):
        super(AttBlock, self).__init__()
        
        self.activation = activation
        self.temperature = temperature
        self.att = nn.Conv1d(in_channels=n_in, out_channels=n_out, kernel_size=1, stride=1, padding=0, bias=True)
        self.cla = nn.Conv1d(in_channels=n_in, out_channels=n_out, kernel_size=1, stride=1, padding=0, bias=True)
        
        self.bn_att = nn.BatchNorm1d(n_out)
         
    def forward(self, x):
        # x: (n_samples, n_in, n_time)
        norm_att = torch.softmax(torch.clamp(self.att(x), -10, 10), dim=-1)
        cla = self.nonlinear_transform(self.cla(x))
        x = torch.sum(norm_att * cla, dim=2)
        return x, norm_att, cla

    def nonlinear_transform(self, x):
        if self.activation == 'linear':
            return x
        elif self.activation == 'sigmoid':
            return torch.sigmoid(x)


class Cnn14(nn.Module):
    def __init__(self, sample_rate, window_size, hop_size, mel_bins, fmin, 
        fmax, classes_num, out_emb):
        
        super(Cnn14, self).__init__()

        window = 'hann'
        center = True
        pad_mode = 'reflect'
        ref = 1.0
        amin = 1e-10
        top_db = None

        # Spectrogram extractor
        self.spectrogram_extractor = Spectrogram(n_fft=window_size, hop_length=hop_size, 
            win_length=window_size, window=window, center=center, pad_mode=pad_mode, 
            freeze_parameters=True)

        # Logmel feature extractor
        self.logmel_extractor = LogmelFilterBank(sr=sample_rate, n_fft=window_size, 
            n_mels=mel_bins, fmin=fmin, fmax=fmax, ref=ref, amin=amin, top_db=top_db, 
            freeze_parameters=True)

        self.bn0 = nn.BatchNorm2d(64)

        self.conv_block1 = ConvBlock(in_channels=1, out_channels=64)
        self.conv_block2 = ConvBlock(in_channels=64, out_channels=128)
        self.conv_block3 = ConvBlock(in_channels=128, out_channels=256)
        self.conv_block4 = ConvBlock(in_channels=256, out_channels=512)
        self.conv_block5 = ConvBlock(in_channels=512, out_channels=1024)
        self.conv_block6 = ConvBlock(in_channels=1024, out_channels=2048)
        
        # out_emb is 2048 for best Cnn14
        self.fc1 = nn.Linear(2048, out_emb, bias=True)
        self.fc_audioset = nn.Linear(out_emb, classes_num, bias=True)
        
    def forward(self, input, mixup_lambda=None):
        """
        Input: (batch_size, data_length)
        """

        x = self.spectrogram_extractor(input)   # (batch_size, 1, time_steps, freq_bins)
        x = self.logmel_extractor(x)    # (batch_size, 1, time_steps, mel_bins)

        x = x.transpose(1, 3)
        x = self.bn0(x)
        x = x.transpose(1, 3)

        x = self.conv_block1(x, pool_size=(2, 2), pool_type='avg')
        x = F.dropout(x, p=0.2, training=self.training)
        x = self.conv_block2(x, pool_size=(2, 2), pool_type='avg')
        x = F.dropout(x, p=0.2, training=self.training)
        x = self.conv_block3(x, pool_size=(2, 2), pool_type='avg')
        x = F.dropout(x, p=0.2, training=self.training)
        x = self.conv_block4(x, pool_size=(2, 2), pool_type='avg')
        x = F.dropout(x, p=0.2, training=self.training)
        x = self.conv_block5(x, pool_size=(2, 2), pool_type='avg')
        x = F.dropout(x, p=0.2, training=self.training)
        x = self.conv_block6(x, pool_size=(1, 1), pool_type='avg')
        x = F.dropout(x, p=0.2, training=self.training)
        x = torch.mean(x, dim=3)
        
        (x1, _) = torch.max(x, dim=2)
        x2 = torch.mean(x, dim=2)
        x = x1 + x2
        x = F.dropout(x, p=0.5, training=self.training)
        x = F.relu_(self.fc1(x))
        embedding = F.dropout(x, p=0.5, training=self.training)
        clipwise_output = torch.sigmoid(self.fc_audioset(x))
        
        output_dict = {'clipwise_output': clipwise_output, 'embedding': embedding}

        return output_dict