File size: 8,987 Bytes
2b5b9ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import sys
import numpy as np
import torch
from typing import TypeVar, Optional, Iterator
import logging
import pandas as pd
from ldm.data.joinaudiodataset_anylen import *
import glob
logger = logging.getLogger(f'main.{__name__}')

sys.path.insert(0, '.')  # nopep8

class JoinManifestSpecs(torch.utils.data.Dataset):
    def __init__(self, split, main_spec_dir_path,other_spec_dir_path, mel_num=80,mode='pad', spec_crop_len=1248,pad_value=-5,drop=0,**kwargs):
        super().__init__()
        self.split = split
        self.max_batch_len = spec_crop_len
        self.min_batch_len = 64
        self.min_factor = 4
        self.mel_num = mel_num
        self.drop = drop
        self.pad_value = pad_value
        assert mode in ['pad','tile']
        self.collate_mode = mode
        manifest_files = []
        for dir_path in main_spec_dir_path.split(','):
            manifest_files += glob.glob(f'{dir_path}/*.tsv')
        df_list = [pd.read_csv(manifest,sep='\t') for manifest in manifest_files]
        self.df_main = pd.concat(df_list,ignore_index=True)

        manifest_files = []
        for dir_path in other_spec_dir_path.split(','):
            manifest_files += glob.glob(f'{dir_path}/*.tsv')
        df_list = [pd.read_csv(manifest,sep='\t') for manifest in manifest_files]
        self.df_other = pd.concat(df_list,ignore_index=True)
        self.df_other.reset_index(inplace=True)

        if split == 'train':
            self.dataset = self.df_main.iloc[100:]
        elif split == 'valid' or split == 'val':
            self.dataset = self.df_main.iloc[:100]
        elif split == 'test':
            self.df_main = self.add_name_num(self.df_main)
            self.dataset = self.df_main
        else:
            raise ValueError(f'Unknown split {split}')
        self.dataset.reset_index(inplace=True)
        print('dataset len:', len(self.dataset),"drop_rate",self.drop)

    def add_name_num(self,df):
        """each file may have different caption, we add num to filename to identify each audio-caption pair"""
        name_count_dict = {}
        change = []
        for t in df.itertuples():
            name = getattr(t,'name')
            if name in name_count_dict:
                name_count_dict[name] += 1
            else:
                name_count_dict[name] = 0
            change.append((t[0],name_count_dict[name]))
        for t in change:
            df.loc[t[0],'name'] = str(df.loc[t[0],'name']) + f'_{t[1]}'
        return df

    def ordered_indices(self):
        index2dur = self.dataset[['duration']].sort_values(by='duration')
        index2dur_other = self.df_other[['duration']].sort_values(by='duration')
        other_indices = list(index2dur_other.index)
        offset = len(self.dataset)
        other_indices = [x + offset for x in other_indices]
        return list(index2dur.index),other_indices

    def collater(self,inputs):
        to_dict = {}
        for l in inputs:
            for k,v in l.items():
                if k in to_dict:
                    to_dict[k].append(v)
                else:
                    to_dict[k] = [v]

        if self.collate_mode == 'pad':
            to_dict['image'] = collate_1d_or_2d(to_dict['image'],pad_idx=self.pad_value,min_len = self.min_batch_len,max_len=self.max_batch_len,min_factor=self.min_factor)
        elif self.collate_mode == 'tile':
            to_dict['image'] = collate_1d_or_2d_tile(to_dict['image'],min_len = self.min_batch_len,max_len=self.max_batch_len,min_factor=self.min_factor)
        else:
            raise NotImplementedError
        to_dict['caption'] = {'ori_caption':[c['ori_caption'] for c in to_dict['caption']],
                              'struct_caption':[c['struct_caption'] for c in to_dict['caption']]}

        return to_dict

    def __getitem__(self, idx):
        if idx < len(self.dataset):
            data = self.dataset.iloc[idx]
            p = np.random.uniform(0,1)
            if p > self.drop:
                ori_caption = data['ori_cap']
                struct_caption = data['caption']
            else:
                ori_caption = ""
                struct_caption = ""
        else:
            data = self.df_other.iloc[idx-len(self.dataset)]
            p = np.random.uniform(0,1)
            if p > self.drop:
                ori_caption = data['caption']
                struct_caption = f'<{ori_caption}& all>'
            else:
                ori_caption = ""
                struct_caption = ""
        item = {}
        try:
            spec = np.load(data['mel_path']) # mel spec [80, T]
            if spec.shape[1] > self.max_batch_len:
                spec = spec[:,:self.max_batch_len]
        except:
            mel_path = data['mel_path']
            print(f'corrupted:{mel_path}')
            spec = np.ones((self.mel_num,self.min_batch_len)).astype(np.float32)*self.pad_value
        
        item['image'] = spec
        item["caption"] = {"ori_caption":ori_caption,"struct_caption":struct_caption}
        if self.split == 'test':
            item['f_name'] = data['name']
        return item

    def __len__(self):
        return len(self.dataset) + len(self.df_other)


class JoinSpecsTrain(JoinManifestSpecs):
    def __init__(self, specs_dataset_cfg):
        super().__init__('train', **specs_dataset_cfg)

class JoinSpecsValidation(JoinManifestSpecs):
    def __init__(self, specs_dataset_cfg):
        super().__init__('valid', **specs_dataset_cfg)

class JoinSpecsTest(JoinManifestSpecs):
    def __init__(self, specs_dataset_cfg):
        super().__init__('test', **specs_dataset_cfg)



class DDPIndexBatchSampler(Sampler):# 让长度相似的音频的indices合到一个batch中以避免过长的pad
    def __init__(self, main_indices,other_indices,batch_size, num_replicas: Optional[int] = None,
                 rank: Optional[int] = None, shuffle: bool = True,
                 seed: int = 0, drop_last: bool = False) -> None:
        if num_replicas is None:
            if not dist.is_initialized():
                # raise RuntimeError("Requires distributed package to be available")
                print("Not in distributed mode")
                num_replicas = 1
            else:
                num_replicas = dist.get_world_size()
        if rank is None:
            if not dist.is_initialized():
                # raise RuntimeError("Requires distributed package to be available")
                rank = 0
            else:
                rank = dist.get_rank()
        if rank >= num_replicas or rank < 0:
            raise ValueError(
                "Invalid rank {}, rank should be in the interval"
                " [0, {}]".format(rank, num_replicas - 1))
        self.main_indices = main_indices
        self.other_indices = other_indices
        self.max_index = max(self.other_indices)
        self.num_replicas = num_replicas
        self.rank = rank
        self.epoch = 0
        self.drop_last = drop_last
        self.batch_size = batch_size
        self.shuffle = shuffle
        self.batches = self.build_batches()
        self.seed = seed

    def set_epoch(self,epoch):
        # print("!!!!!!!!!!!set epoch is called!!!!!!!!!!!!!!")
        self.epoch = epoch
        if self.shuffle:
            np.random.seed(self.seed+self.epoch)
            self.batches = self.build_batches()

    def build_batches(self):
        batches,batch = [],[]
        for index in self.main_indices:
            batch.append(index)
            if len(batch) == self.batch_size:
                batches.append(batch)
                batch = []
        if not self.drop_last and len(batch) > 0:
            batches.append(batch)
        selected_others = np.random.choice(len(self.other_indices),len(batches),replace=False)
        for index in selected_others:
            if index + self.batch_size > len(self.other_indices):
                index = len(self.other_indices) - self.batch_size
            batch = [self.other_indices[index + i] for i in range(self.batch_size)]
            batches.append(batch)
        self.batches = batches
        if self.shuffle:
            self.batches = np.random.permutation(self.batches)
        if self.rank == 0:
            print(f"rank: {self.rank}, batches_num {len(self.batches)}")

        if self.drop_last and len(self.batches) % self.num_replicas != 0:
            self.batches = self.batches[:len(self.batches)//self.num_replicas*self.num_replicas]
        if len(self.batches) >= self.num_replicas: 
            self.batches = self.batches[self.rank::self.num_replicas]
        else: # may happen in sanity checking
            self.batches = [self.batches[0]]
        if self.rank == 0:
            print(f"after split batches_num {len(self.batches)}")

        return self.batches

    def __iter__(self) -> Iterator[List[int]]:
        print(f"len(self.batches):{len(self.batches)}")
        for batch in self.batches:
            yield batch

    def __len__(self) -> int:
        return len(self.batches)