Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
from functools import partial | |
from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test | |
from torch.utils.checkpoint import checkpoint | |
from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel, AutoTokenizer | |
from importlib_resources import files | |
from ldm.modules.encoders.CLAP.utils import read_config_as_args | |
from ldm.modules.encoders.CLAP.clap import TextEncoder | |
import copy | |
from ldm.util import default, count_params | |
import pytorch_lightning as pl | |
class AbstractEncoder(pl.LightningModule): | |
def __init__(self): | |
super().__init__() | |
def encode(self, *args, **kwargs): | |
raise NotImplementedError | |
class ClassEmbedder(nn.Module): | |
def __init__(self, embed_dim, n_classes=1000, key='class'): | |
super().__init__() | |
self.key = key | |
self.embedding = nn.Embedding(n_classes, embed_dim) | |
def forward(self, batch, key=None): | |
if key is None: | |
key = self.key | |
# this is for use in crossattn | |
c = batch[key][:, None]# (bsz,1) | |
c = self.embedding(c) | |
return c | |
class TransformerEmbedder(AbstractEncoder): | |
"""Some transformer encoder layers""" | |
def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"): | |
super().__init__() | |
self.device = device | |
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len, | |
attn_layers=Encoder(dim=n_embed, depth=n_layer)) | |
def forward(self, tokens): | |
tokens = tokens.to(self.device) # meh | |
z = self.transformer(tokens, return_embeddings=True) | |
return z | |
def encode(self, x): | |
return self(x) | |
class BERTTokenizer(AbstractEncoder): | |
""" Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)""" | |
def __init__(self, device="cuda", vq_interface=True, max_length=77): | |
super().__init__() | |
from transformers import BertTokenizerFast # TODO: add to reuquirements | |
self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased") | |
self.device = device | |
self.vq_interface = vq_interface | |
self.max_length = max_length | |
def forward(self, text): | |
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, | |
return_overflowing_tokens=False, padding="max_length", return_tensors="pt") | |
tokens = batch_encoding["input_ids"].to(self.device) | |
return tokens | |
def encode(self, text): | |
tokens = self(text) | |
if not self.vq_interface: | |
return tokens | |
return None, None, [None, None, tokens] | |
def decode(self, text): | |
return text | |
class BERTEmbedder(AbstractEncoder):# 这里不是用的pretrained bert,是用的transformers的BertTokenizer加自定义的TransformerWrapper | |
"""Uses the BERT tokenizr model and add some transformer encoder layers""" | |
def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77, | |
device="cuda",use_tokenizer=True, embedding_dropout=0.0): | |
super().__init__() | |
self.use_tknz_fn = use_tokenizer | |
if self.use_tknz_fn: | |
self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len) | |
self.device = device | |
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len, | |
attn_layers=Encoder(dim=n_embed, depth=n_layer), | |
emb_dropout=embedding_dropout) | |
def forward(self, text): | |
if self.use_tknz_fn: | |
tokens = self.tknz_fn(text)#.to(self.device) | |
else: | |
tokens = text | |
z = self.transformer(tokens, return_embeddings=True) | |
return z | |
def encode(self, text): | |
# output of length 77 | |
return self(text) | |
class SpatialRescaler(nn.Module): | |
def __init__(self, | |
n_stages=1, | |
method='bilinear', | |
multiplier=0.5, | |
in_channels=3, | |
out_channels=None, | |
bias=False): | |
super().__init__() | |
self.n_stages = n_stages | |
assert self.n_stages >= 0 | |
assert method in ['nearest','linear','bilinear','trilinear','bicubic','area'] | |
self.multiplier = multiplier | |
self.interpolator = partial(torch.nn.functional.interpolate, mode=method) | |
self.remap_output = out_channels is not None | |
if self.remap_output: | |
print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.') | |
self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias) | |
def forward(self,x): | |
for stage in range(self.n_stages): | |
x = self.interpolator(x, scale_factor=self.multiplier) | |
if self.remap_output: | |
x = self.channel_mapper(x) | |
return x | |
def encode(self, x): | |
return self(x) | |
def disabled_train(self, mode=True): | |
"""Overwrite model.train with this function to make sure train/eval mode | |
does not change anymore.""" | |
return self | |
class FrozenT5Embedder(AbstractEncoder): | |
"""Uses the T5 transformer encoder for text""" | |
def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77, freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl | |
super().__init__() | |
self.tokenizer = T5Tokenizer.from_pretrained(version) | |
self.transformer = T5EncoderModel.from_pretrained(version) | |
self.device = device | |
self.max_length = max_length # TODO: typical value? | |
if freeze: | |
self.freeze() | |
def freeze(self): | |
self.transformer = self.transformer.eval() | |
#self.train = disabled_train | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, text): | |
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, | |
return_overflowing_tokens=False, padding="max_length", return_tensors="pt") | |
tokens = batch_encoding["input_ids"].to(self.device) | |
outputs = self.transformer(input_ids=tokens) | |
z = outputs.last_hidden_state | |
return z | |
def encode(self, text): | |
return self(text) | |
class FrozenFLANEmbedder(AbstractEncoder): | |
"""Uses the T5 transformer encoder for text""" | |
def __init__(self, version="google/flan-t5-large", device="cuda", max_length=77, freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl | |
super().__init__() | |
self.tokenizer = T5Tokenizer.from_pretrained(version) | |
self.transformer = T5EncoderModel.from_pretrained(version) | |
self.device = device | |
self.max_length = max_length # TODO: typical value? | |
if freeze: | |
self.freeze() | |
def freeze(self): | |
self.transformer = self.transformer.eval() | |
#self.train = disabled_train | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, text): | |
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, | |
return_overflowing_tokens=False, padding="max_length", return_tensors="pt") | |
tokens = batch_encoding["input_ids"].to(self.device)# tango的flanT5是不定长度的batch,这里做成定长的batch | |
outputs = self.transformer(input_ids=tokens) | |
z = outputs.last_hidden_state | |
return z | |
def encode(self, text): | |
return self(text) | |
class FrozenCLAPEmbedder(AbstractEncoder): | |
"""Uses the CLAP transformer encoder for text from microsoft""" | |
def __init__(self, weights_path, freeze=True, device="cuda", max_length=77): # clip-vit-base-patch32 | |
super().__init__() | |
model_state_dict = torch.load(weights_path, map_location=torch.device('cpu'))['model'] | |
match_params = dict() | |
for key in list(model_state_dict.keys()): | |
if 'caption_encoder' in key: | |
match_params[key.replace('caption_encoder.', '')] = model_state_dict[key] | |
config_as_str = files('ldm').joinpath('modules/encoders/CLAP/config.yml').read_text() | |
args = read_config_as_args(config_as_str, is_config_str=True) | |
# To device | |
self.tokenizer = AutoTokenizer.from_pretrained(args.text_model) # args.text_model | |
self.caption_encoder = TextEncoder( | |
args.d_proj, args.text_model, args.transformer_embed_dim | |
) | |
self.max_length = max_length | |
self.device = device | |
if freeze: self.freeze() | |
print(f"{self.caption_encoder.__class__.__name__} comes with {count_params(self.caption_encoder) * 1.e-6:.2f} M params.") | |
def freeze(self):# only freeze | |
self.caption_encoder.base = self.caption_encoder.base.eval() | |
for param in self.caption_encoder.base.parameters(): | |
param.requires_grad = False | |
def encode(self, text): | |
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, | |
return_overflowing_tokens=False, padding="max_length", return_tensors="pt") | |
tokens = batch_encoding["input_ids"].to(self.device) | |
outputs = self.caption_encoder.base(input_ids=tokens) | |
z = self.caption_encoder.projection(outputs.last_hidden_state) | |
return z | |
class FrozenLAIONCLAPEmbedder(AbstractEncoder): | |
"""Uses the CLAP transformer encoder for text from LAION-AI""" | |
def __init__(self, weights_path, freeze=True,sentence=False, device="cuda", max_length=77): # clip-vit-base-patch32 | |
super().__init__() | |
# To device | |
from transformers import RobertaTokenizer | |
from ldm.modules.encoders.open_clap import create_model | |
self.sentence = sentence | |
model, model_cfg = create_model( | |
'HTSAT-tiny', | |
'roberta', | |
weights_path, | |
enable_fusion=True, | |
fusion_type='aff_2d' | |
) | |
del model.audio_branch, model.audio_transform, model.audio_projection | |
self.tokenizer = RobertaTokenizer.from_pretrained('roberta-base') | |
self.model = model | |
self.max_length = max_length | |
self.device = device | |
self.to(self.device) | |
if freeze: self.freeze() | |
param_num = sum(p.numel() for p in model.parameters()) | |
print(f'{self.model.__class__.__name__} comes with: {param_num / 1e6:.3f} M params.') | |
def to(self,device): | |
self.model.to(device=device) | |
self.device=device | |
def freeze(self): | |
self.model = self.model.eval() | |
for param in self.model.parameters(): | |
param.requires_grad = False | |
def encode(self, text): | |
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, padding="max_length", return_tensors="pt").to(self.device) | |
if self.sentence: | |
z = self.model.get_text_embedding(batch_encoding).unsqueeze(1) | |
else: | |
# text_branch is roberta | |
outputs = self.model.text_branch(input_ids=batch_encoding["input_ids"].to(self.device), attention_mask=batch_encoding["attention_mask"].to(self.device)) | |
z = self.model.text_projection(outputs.last_hidden_state) | |
return z | |
class FrozenLAIONCLAPSetenceEmbedder(AbstractEncoder): | |
"""Uses the CLAP transformer encoder for text from LAION-AI""" | |
def __init__(self, weights_path, freeze=True, device="cuda", max_length=77): # clip-vit-base-patch32 | |
super().__init__() | |
# To device | |
from transformers import RobertaTokenizer | |
from ldm.modules.encoders.open_clap import create_model | |
model, model_cfg = create_model( | |
'HTSAT-tiny', | |
'roberta', | |
weights_path, | |
enable_fusion=True, | |
fusion_type='aff_2d' | |
) | |
del model.audio_branch, model.audio_transform, model.audio_projection | |
self.tokenize = RobertaTokenizer.from_pretrained('roberta-base') | |
self.model = model | |
self.max_length = max_length | |
self.device = device | |
if freeze: self.freeze() | |
param_num = sum(p.numel() for p in model.parameters()) | |
print(f'{self.model.__class__.__name__} comes with: {param_num / 1e+6:.3f} M params.') | |
def freeze(self): | |
self.model = self.model.eval() | |
for param in self.model.parameters(): | |
param.requires_grad = False | |
def tokenizer(self, text): | |
result = self.tokenize( | |
text, | |
padding="max_length", | |
truncation=True, | |
max_length=512, | |
return_tensors="pt", | |
) | |
return result | |
def encode(self, text): | |
with torch.no_grad(): | |
# the 'fusion' truncate mode can be changed to 'rand_trunc' if run in unfusion mode | |
text_data = self.tokenizer(text)# input_ids shape:(b,512) | |
embed = self.model.get_text_embedding(text_data) | |
embed = embed.unsqueeze(1)# (b,1,512) | |
return embed | |
class FrozenCLAPOrderEmbedder2(AbstractEncoder):# 每个object后面都加上| | |
"""Uses the CLAP transformer encoder for text (from huggingface)""" | |
def __init__(self, weights_path, freeze=True, device="cuda"): | |
super().__init__() | |
model_state_dict = torch.load(weights_path, map_location=torch.device('cpu'))['model'] | |
match_params = dict() | |
for key in list(model_state_dict.keys()): | |
if 'caption_encoder' in key: | |
match_params[key.replace('caption_encoder.', '')] = model_state_dict[key] | |
config_as_str = files('ldm').joinpath('modules/encoders/CLAP/config.yml').read_text() | |
args = read_config_as_args(config_as_str, is_config_str=True) | |
# To device | |
self.tokenizer = AutoTokenizer.from_pretrained(args.text_model) # args.text_model | |
self.caption_encoder = TextEncoder( | |
args.d_proj, args.text_model, args.transformer_embed_dim | |
).to(device) | |
self.max_objs = 10 | |
self.max_length = args.text_len | |
self.device = device | |
self.order_to_label = self.build_order_dict() | |
if freeze: self.freeze() | |
print(f"{self.caption_encoder.__class__.__name__} comes with {count_params(self.caption_encoder) * 1.e-6:.2f} M params.") | |
def freeze(self): | |
self.caption_encoder.base = self.caption_encoder.base.eval() | |
for param in self.caption_encoder.base.parameters(): | |
param.requires_grad = False | |
def build_order_dict(self): | |
order2label = {} | |
num_orders = 10 | |
time_stamps = ['start','mid','end'] | |
time_num = len(time_stamps) | |
for i in range(num_orders): | |
for j,time_stamp in enumerate(time_stamps): | |
order2label[f'order {i} {time_stamp}'] = i * time_num + j | |
order2label['all'] = num_orders*len(time_stamps) | |
order2label['unknown'] = num_orders*len(time_stamps) + 1 | |
return order2label | |
def encode(self, text): | |
obj_list,orders_list = [],[] | |
for raw in text: | |
splits = raw.split('@') # raw example: '<man speaking& order 1 start>@<man speaking& order 2 mid>@<idle engine& all>' | |
objs = [] | |
orders = [] | |
for split in splits:# <obj& order> | |
split = split[1:-1] | |
obj,order = split.split('&') | |
objs.append(obj.strip()) | |
try: | |
orders.append(self.order_to_label[order.strip()]) | |
except: | |
print(order.strip(),raw) | |
assert len(objs) == len(orders) | |
obj_list.append(' | '.join(objs)+' |')# '|' after every word | |
orders_list.append(orders) | |
batch_encoding = self.tokenizer(obj_list, truncation=True, max_length=self.max_length, return_length=True, | |
return_overflowing_tokens=False, padding="max_length", return_tensors="pt") | |
tokens = batch_encoding["input_ids"] | |
outputs = self.caption_encoder.base(input_ids=tokens.to(self.device)) | |
z = self.caption_encoder.projection(outputs.last_hidden_state) | |
return {'token_embedding':z,'token_ids':tokens,'orders':orders_list} | |
class FrozenCLAPOrderEmbedder3(AbstractEncoder):# 相比于FrozenCLAPOrderEmbedder2移除了projection,使用正确的max_len,去除了order仅保留时间。 | |
"""Uses the CLAP transformer encoder for text (from huggingface)""" | |
def __init__(self, weights_path, freeze=True, device="cuda"): # clip-vit-base-patch32 | |
super().__init__() | |
model_state_dict = torch.load(weights_path, map_location=torch.device('cpu'))['model'] | |
match_params = dict() | |
for key in list(model_state_dict.keys()): | |
if 'caption_encoder' in key: | |
match_params[key.replace('caption_encoder.', '')] = model_state_dict[key] | |
config_as_str = files('ldm').joinpath('modules/encoders/CLAP/config.yml').read_text() | |
args = read_config_as_args(config_as_str, is_config_str=True) | |
# To device | |
self.tokenizer = AutoTokenizer.from_pretrained(args.text_model) # args.text_model | |
self.caption_encoder = TextEncoder( | |
args.d_proj, args.text_model, args.transformer_embed_dim | |
).to(device) | |
self.max_objs = 10 | |
self.max_length = args.text_len | |
self.device = device | |
self.order_to_label = self.build_order_dict() | |
if freeze: self.freeze() | |
print(f"{self.caption_encoder.__class__.__name__} comes with {count_params(self.caption_encoder) * 1.e-6:.2f} M params.") | |
def freeze(self): | |
self.caption_encoder.base = self.caption_encoder.base.eval() | |
for param in self.caption_encoder.base.parameters(): | |
param.requires_grad = False | |
def build_order_dict(self): | |
order2label = {} | |
time_stamps = ['all','start','mid','end'] | |
for i,time_stamp in enumerate(time_stamps): | |
order2label[time_stamp] = i | |
return order2label | |
def encode(self, text): | |
obj_list,orders_list = [],[] | |
for raw in text: | |
splits = raw.split('@') # raw example: '<man speaking& order 1 start>@<man speaking& order 2 mid>@<idle engine& all>' | |
objs = [] | |
orders = [] | |
for split in splits:# <obj& order> | |
split = split[1:-1] | |
obj,order = split.split('&') | |
objs.append(obj.strip()) | |
try: | |
orders.append(self.order_to_label[order.strip()]) | |
except: | |
print(order.strip(),raw) | |
assert len(objs) == len(orders) | |
obj_list.append(' | '.join(objs)+' |')# '|' after every word | |
orders_list.append(orders) | |
batch_encoding = self.tokenizer(obj_list, truncation=True, max_length=self.max_length, return_length=True, | |
return_overflowing_tokens=False, padding="max_length", return_tensors="pt") | |
tokens = batch_encoding["input_ids"] | |
attn_mask = batch_encoding["attention_mask"] | |
outputs = self.caption_encoder.base(input_ids=tokens.to(self.device)) | |
z = outputs.last_hidden_state | |
return {'token_embedding':z,'token_ids':tokens,'orders':orders_list,'attn_mask':attn_mask} | |
class FrozenCLAPT5Embedder(AbstractEncoder): | |
"""Uses the CLAP transformer encoder for text from microsoft""" | |
def __init__(self, weights_path,t5version="google/flan-t5-large", freeze=True, device="cuda", max_length=77): # clip-vit-base-patch32 | |
super().__init__() | |
model_state_dict = torch.load(weights_path, map_location=torch.device('cpu'))['model'] | |
match_params = dict() | |
for key in list(model_state_dict.keys()): | |
if 'caption_encoder' in key: | |
match_params[key.replace('caption_encoder.', '')] = model_state_dict[key] | |
config_as_str = files('ldm').joinpath('modules/encoders/CLAP/config.yml').read_text() | |
args = read_config_as_args(config_as_str, is_config_str=True) | |
self.clap_tokenizer = AutoTokenizer.from_pretrained(args.text_model) # args.text_model | |
self.caption_encoder = TextEncoder( | |
args.d_proj, args.text_model, args.transformer_embed_dim | |
) | |
self.t5_tokenizer = T5Tokenizer.from_pretrained(t5version) | |
self.t5_transformer = T5EncoderModel.from_pretrained(t5version) | |
self.max_length = max_length | |
self.to(device=device) | |
if freeze: self.freeze() | |
print(f"{self.caption_encoder.__class__.__name__} comes with {count_params(self.caption_encoder) * 1.e-6:.2f} M params.") | |
def freeze(self): | |
self.caption_encoder = self.caption_encoder.eval() | |
for param in self.caption_encoder.parameters(): | |
param.requires_grad = False | |
def to(self,device): | |
self.t5_transformer.to(device) | |
self.caption_encoder.to(device) | |
self.device = device | |
def encode(self, text): | |
ori_caption = text['ori_caption'] | |
struct_caption = text['struct_caption'] | |
# print(ori_caption,struct_caption) | |
clap_batch_encoding = self.clap_tokenizer(ori_caption, truncation=True, max_length=self.max_length, return_length=True, | |
return_overflowing_tokens=False, padding="max_length", return_tensors="pt") | |
ori_tokens = clap_batch_encoding["input_ids"].to(self.device) | |
t5_batch_encoding = self.t5_tokenizer(struct_caption, truncation=True, max_length=self.max_length, return_length=True, | |
return_overflowing_tokens=False, padding="max_length", return_tensors="pt") | |
struct_tokens = t5_batch_encoding["input_ids"].to(self.device) | |
outputs = self.caption_encoder.base(input_ids=ori_tokens) | |
z = self.caption_encoder.projection(outputs.last_hidden_state) | |
z2 = self.t5_transformer(input_ids=struct_tokens).last_hidden_state | |
return torch.concat([z,z2],dim=1) | |
class FrozenCLAPFLANEmbedder(AbstractEncoder): | |
"""Uses the CLAP transformer encoder for text from microsoft""" | |
def __init__(self, weights_path,t5version="../ldm/modules/encoders/CLAP/t5-v1_1-large", freeze=True, device="cuda", max_length=77): # clip-vit-base-patch32 | |
super().__init__() | |
model_state_dict = torch.load(weights_path, map_location=torch.device('cpu'))['model'] | |
match_params = dict() | |
for key in list(model_state_dict.keys()): | |
if 'caption_encoder' in key: | |
match_params[key.replace('caption_encoder.', '')] = model_state_dict[key] | |
config_as_str = files('ldm').joinpath('modules/encoders/CLAP/config.yaml').read_text() | |
args = read_config_as_args(config_as_str, is_config_str=True) | |
self.clap_tokenizer = AutoTokenizer.from_pretrained(args.text_model) # args.text_model | |
self.caption_encoder = TextEncoder( | |
args.d_proj, args.text_model, args.transformer_embed_dim | |
) | |
self.t5_tokenizer = T5Tokenizer.from_pretrained(t5version) | |
self.t5_transformer = T5EncoderModel.from_pretrained(t5version) | |
self.max_length = max_length | |
# self.to(device=device) | |
if freeze: self.freeze() | |
print(f"{self.caption_encoder.__class__.__name__} comes with {count_params(self.caption_encoder) * 1.e-6:.2f} M params.") | |
def freeze(self): | |
self.caption_encoder = self.caption_encoder.eval() | |
for param in self.caption_encoder.parameters(): | |
param.requires_grad = False | |
def to(self,device): | |
self.t5_transformer.to(device) | |
self.caption_encoder.to(device) | |
self.device = device | |
def encode(self, text): | |
ori_caption = text['ori_caption'] | |
struct_caption = text['struct_caption'] | |
# print(ori_caption,struct_caption) | |
clap_batch_encoding = self.clap_tokenizer(ori_caption, truncation=True, max_length=self.max_length, return_length=True, | |
return_overflowing_tokens=False, padding="max_length", return_tensors="pt") | |
ori_tokens = clap_batch_encoding["input_ids"].to(self.device) | |
t5_batch_encoding = self.t5_tokenizer(struct_caption, truncation=True, max_length=self.max_length, return_length=True, | |
return_overflowing_tokens=False, padding="max_length", return_tensors="pt") | |
struct_tokens = t5_batch_encoding["input_ids"].to(self.device) | |
# if self.caption_encoder.device != ori_tokens.device: | |
# self.to(self.device) | |
outputs = self.caption_encoder.base(input_ids=ori_tokens) | |
z = self.caption_encoder.projection(outputs.last_hidden_state) | |
z2 = self.t5_transformer(input_ids=struct_tokens).last_hidden_state | |
return torch.concat([z,z2],dim=1) | |