Spaces:
Sleeping
Sleeping
import random | |
import torchaudio | |
from six import string_types as string_classes | |
import collections | |
import re | |
import torch.nn.functional as F | |
import numpy as np | |
from transformers import AutoTokenizer | |
from wav_evaluation.models.utils import read_config_as_args | |
from wav_evaluation.models.clap import CLAP | |
import math | |
import torchaudio.transforms as T | |
import os | |
import torch | |
# from importlib_resources import files | |
import numpy as np | |
import librosa | |
import torch | |
import laion_clap | |
def int16_to_float32(x): | |
return (x / 32767.0).astype(np.float32) | |
def float32_to_int16(x): | |
x = np.clip(x, a_min=-1., a_max=1.) | |
return (x * 32767.).astype(np.int16) | |
class CLAPWrapper(): | |
""" | |
A class for interfacing CLAP model. | |
""" | |
def __init__(self, model_fp,config_path, use_cuda=False): | |
self.np_str_obj_array_pattern = re.compile(r'[SaUO]') | |
self.file_path = os.path.realpath(__file__) | |
self.default_collate_err_msg_format = ( | |
"default_collate: batch must contain tensors, numpy arrays, numbers, " | |
"dicts or lists; found {}") | |
with open(config_path,'r') as f: | |
self.config_as_str = f.read() | |
self.model_fp = model_fp | |
self.use_cuda = use_cuda | |
self.clap, self.tokenizer, self.args = self.load_clap() | |
self.model = laion_clap.CLAP_Module(enable_fusion=False,amodel= 'HTSAT-base') | |
self.model.load_ckpt('/root/autodl-tmp/liuhuadai/CLAP/music_audioset_epoch_15_esc_90.14.pt') # download the default pretrained checkpoint. | |
def load_clap(self): | |
r"""Load CLAP model with args from config file""" | |
args = read_config_as_args(self.config_as_str, is_config_str=True) | |
if 'bert' in args.text_model: | |
self.token_keys = ['input_ids', 'token_type_ids', 'attention_mask'] | |
else: | |
self.token_keys = ['input_ids', 'attention_mask'] | |
clap = CLAP( | |
audioenc_name=args.audioenc_name, | |
sample_rate=args.sampling_rate, | |
window_size=args.window_size, | |
hop_size=args.hop_size, | |
mel_bins=args.mel_bins, | |
fmin=args.fmin, | |
fmax=args.fmax, | |
classes_num=args.num_classes, | |
out_emb=args.out_emb, | |
text_model=args.text_model, | |
transformer_embed_dim=args.transformer_embed_dim, | |
d_proj=args.d_proj | |
) | |
# Load pretrained weights for model | |
model_state_dict = torch.load(self.model_fp, map_location=torch.device('cpu'))['model'] | |
clap.load_state_dict(model_state_dict, strict=False) | |
clap.eval() # set clap in eval mode | |
tokenizer = AutoTokenizer.from_pretrained(args.text_model) | |
if self.use_cuda and torch.cuda.is_available(): | |
clap = clap.cuda() | |
return clap, tokenizer, args | |
def default_collate(self, batch): | |
r"""Puts each data field into a tensor with outer dimension batch size""" | |
elem = batch[0] | |
elem_type = type(elem) | |
if isinstance(elem, torch.Tensor): | |
out = None | |
if torch.utils.data.get_worker_info() is not None: | |
# If we're in a background process, concatenate directly into a | |
# shared memory tensor to avoid an extra copy | |
numel = sum([x.numel() for x in batch]) | |
storage = elem.storage()._new_shared(numel) | |
out = elem.new(storage) | |
return torch.stack(batch, 0, out=out) | |
elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \ | |
and elem_type.__name__ != 'string_': | |
if elem_type.__name__ == 'ndarray' or elem_type.__name__ == 'memmap': | |
# array of string classes and object | |
if self.np_str_obj_array_pattern.search(elem.dtype.str) is not None: | |
raise TypeError( | |
self.default_collate_err_msg_format.format(elem.dtype)) | |
return self.default_collate([torch.as_tensor(b) for b in batch]) | |
elif elem.shape == (): # scalars | |
return torch.as_tensor(batch) | |
elif isinstance(elem, float): | |
return torch.tensor(batch, dtype=torch.float64) | |
elif isinstance(elem, int): | |
return torch.tensor(batch) | |
elif isinstance(elem, string_classes): | |
return batch | |
elif isinstance(elem, collections.abc.Mapping): | |
return {key: self.default_collate([d[key] for d in batch]) for key in elem} | |
elif isinstance(elem, tuple) and hasattr(elem, '_fields'): # namedtuple | |
return elem_type(*(self.default_collate(samples) for samples in zip(*batch))) | |
elif isinstance(elem, collections.abc.Sequence): | |
# check to make sure that the elements in batch have consistent size | |
it = iter(batch) | |
elem_size = len(next(it)) | |
if not all(len(elem) == elem_size for elem in it): | |
raise RuntimeError( | |
'each element in list of batch should be of equal size') | |
transposed = zip(*batch) | |
return [self.default_collate(samples) for samples in transposed] | |
raise TypeError(self.default_collate_err_msg_format.format(elem_type)) | |
def load_audio_into_tensor(self, audio_path, audio_duration, resample=False): | |
r"""Loads audio file and returns raw audio.""" | |
# Randomly sample a segment of audio_duration from the clip or pad to match duration | |
audio_time_series, sample_rate = torchaudio.load(audio_path) | |
resample_rate = self.args.sampling_rate | |
if resample: | |
resampler = T.Resample(sample_rate, resample_rate) | |
audio_time_series = resampler(audio_time_series) | |
audio_time_series = audio_time_series.reshape(-1) | |
# audio_time_series is shorter than predefined audio duration, | |
# so audio_time_series is extended | |
if audio_duration*sample_rate >= audio_time_series.shape[0]: | |
repeat_factor = int(np.ceil((audio_duration*sample_rate) / | |
audio_time_series.shape[0])) | |
# Repeat audio_time_series by repeat_factor to match audio_duration | |
audio_time_series = audio_time_series.repeat(repeat_factor) | |
# remove excess part of audio_time_series | |
audio_time_series = audio_time_series[0:audio_duration*sample_rate] | |
else: | |
# audio_time_series is longer than predefined audio duration, | |
# so audio_time_series is trimmed | |
start_index = random.randrange( | |
audio_time_series.shape[0] - audio_duration*sample_rate) | |
audio_time_series = audio_time_series[start_index:start_index + | |
audio_duration*sample_rate] | |
return torch.FloatTensor(audio_time_series) | |
def preprocess_audio(self, audio_files, resample): | |
r"""Load list of audio files and return raw audio""" | |
audio_tensors = [] | |
for audio_file in audio_files: | |
audio_tensor = self.load_audio_into_tensor( | |
audio_file, self.args.duration, resample) | |
audio_tensor = audio_tensor.reshape( | |
1, -1).cuda() if self.use_cuda and torch.cuda.is_available() else audio_tensor.reshape(1, -1) | |
audio_tensors.append(audio_tensor) | |
return self.default_collate(audio_tensors) | |
def preprocess_text(self, text_queries): | |
r"""Load list of class labels and return tokenized text""" | |
tokenized_texts = [] | |
for ttext in text_queries: | |
tok = self.tokenizer.encode_plus( | |
text=ttext, add_special_tokens=True, max_length=self.args.text_len, padding="max_length", return_tensors="pt") # max_length=self.args.text_len, padding=True, | |
for key in self.token_keys: | |
tok[key] = tok[key].reshape(-1).cuda() if self.use_cuda and torch.cuda.is_available() else tok[key].reshape(-1) | |
tokenized_texts.append(tok) | |
return self.default_collate(tokenized_texts) | |
def get_text_embeddings(self, class_labels): | |
print('loading text embeddings') | |
print(class_labels) | |
r"""Load list of class labels and return text embeddings""" | |
text_embed = self.model.get_text_embedding(class_labels, use_tensor=True) | |
text_embed = text_embed/torch.norm(text_embed, dim=-1, keepdim=True) | |
# print(text_embed) | |
# print(text_embed.shape) | |
return text_embed | |
def get_audio_embeddings(self, audio_files, resample): | |
r"""Load list of audio files and return a audio embeddings""" | |
print('loading audio embeddings') | |
audio_data, _ = librosa.load(audio_files[0], sr=48000) # sample rate should be 48000 | |
audio_data = audio_data.reshape(1, -1) # Make it (1,T) or (N,T) | |
audio_data = torch.from_numpy(int16_to_float32(float32_to_int16(audio_data))).float() # quantize before send it in to the model | |
audio_embed = self.model.get_audio_embedding_from_data(x = audio_data, use_tensor=True) | |
audio_embed = audio_embed/torch.norm(audio_embed, dim=-1, keepdim=True) | |
print(audio_embed[:,-20:]) | |
print(audio_embed.shape) | |
return audio_embed | |
def _get_text_embeddings(self, preprocessed_text): | |
r"""Load preprocessed text and return text embeddings""" | |
with torch.no_grad(): | |
text_embeddings = self.clap.caption_encoder(preprocessed_text) | |
text_embeddings = text_embeddings/torch.norm(text_embeddings, dim=-1, keepdim=True) | |
return text_embeddings | |
def _get_audio_embeddings(self, preprocessed_audio): | |
r"""Load preprocessed audio and return a audio embeddings""" | |
with torch.no_grad(): | |
preprocessed_audio = preprocessed_audio.reshape( | |
preprocessed_audio.shape[0], preprocessed_audio.shape[2]) | |
#Append [0] the audio emebdding, [1] has output class probabilities | |
audio_embeddings = self.clap.audio_encoder(preprocessed_audio)[0] | |
audio_embeddings = audio_embeddings/torch.norm(audio_embeddings, dim=-1, keepdim=True) | |
return audio_embeddings | |
def compute_similarity(self, audio_embeddings, text_embeddings,use_logit_scale = True): | |
r"""Compute similarity between text and audio embeddings""" | |
# if use_logit_scale: | |
# logit_scale = self.clap.logit_scale.exp() | |
# similarity = logit_scale*text_embeddings @ audio_embeddings.T | |
# else: | |
# similarity = text_embeddings @ audio_embeddings.T | |
# torch.cosine_similarity(text_embeddings, audio_embeddings) | |
similarity = F.cosine_similarity(text_embeddings, audio_embeddings) | |
print(similarity) | |
return similarity | |
def cal_clap_score(self,txt,audio_path): | |
text_embeddings = self.get_text_embeddings([txt])# 经过了norm的embedding | |
audio_embeddings = self.get_audio_embeddings([audio_path], resample=True)# 这一步比较耗时,读取音频并重采样到44100 | |
score = self.compute_similarity(audio_embeddings, text_embeddings,use_logit_scale=False).squeeze().cpu().numpy() | |
return score | |
def _generic_batch_inference(self, func, *args): | |
r"""Process audio and/or text per batch""" | |
input_tmp = args[0] | |
batch_size = args[-1] | |
# args[0] has audio_files, args[1] has class_labels | |
inputs = [args[0], args[1]] if len(args) == 3 else [args[0]] | |
args0_len = len(args[0]) | |
# compute text_embeddings once for all the audio_files batches | |
if len(inputs) == 2: | |
text_embeddings = self.get_text_embeddings(args[1]) | |
inputs = [args[0], args[1], text_embeddings] | |
dataset_idx = 0 | |
for _ in range(math.ceil(args0_len/batch_size)): | |
next_batch_idx = dataset_idx + batch_size | |
# batch size is bigger than available audio/text items | |
if next_batch_idx >= args0_len: | |
inputs[0] = input_tmp[dataset_idx:] | |
return func(*tuple(inputs)) | |
else: | |
inputs[0] = input_tmp[dataset_idx:next_batch_idx] | |
yield func(*tuple(inputs)) | |
dataset_idx = next_batch_idx | |
def get_audio_embeddings_per_batch(self, audio_files, batch_size): | |
r"""Load preprocessed audio and return a audio embeddings per batch""" | |
return self._generic_batch_inference(self.get_audio_embeddings, audio_files, batch_size) | |
def get_text_embeddings_per_batch(self, class_labels, batch_size): | |
r"""Load preprocessed text and return text embeddings per batch""" | |
return self._generic_batch_inference(self.get_text_embeddings, class_labels, batch_size) | |
def classify_audio_files_per_batch(self, audio_files, class_labels, batch_size): | |
r"""Compute classification probabilities for each audio recording in a batch and each class label""" | |
return self._generic_batch_inference(self.classify_audio_files, audio_files, class_labels, batch_size) | |