inLine-XJY's picture
Upload 335 files
2b5b9ef verified
raw
history blame
14.4 kB
from multiprocessing.sharedctypes import Value
import torch
import torch.distributed.nn
from torch import distributed as dist, nn as nn
from torch.nn import functional as F
import numpy as np
from sklearn.metrics import average_precision_score, roc_auc_score, accuracy_score
try:
import horovod.torch as hvd
except ImportError:
hvd = None
def gather_features(
audio_features,
text_features,
audio_features_mlp=None,
text_features_mlp=None,
local_loss=False,
gather_with_grad=False,
rank=0,
world_size=1,
use_horovod=False,
mlp_loss=False
):
if use_horovod:
assert hvd is not None, 'Please install horovod'
if gather_with_grad:
all_audio_features = hvd.allgather(audio_features)
all_text_features = hvd.allgather(text_features)
if mlp_loss:
all_audio_features_mlp = hvd.allgather(audio_features_mlp)
all_text_features_mlp = hvd.allgather(text_features_mlp)
else:
with torch.no_grad():
all_audio_features = hvd.allgather(audio_features)
all_text_features = hvd.allgather(text_features)
if mlp_loss:
all_audio_features_mlp = hvd.allgather(audio_features_mlp)
all_text_features_mlp = hvd.allgather(text_features_mlp)
if not local_loss:
# ensure grads for local rank when all_* features don't have a gradient
gathered_audio_features = list(all_audio_features.chunk(world_size, dim=0))
gathered_text_features = list(all_text_features.chunk(world_size, dim=0))
gathered_audio_features[rank] = audio_features
gathered_text_features[rank] = text_features
all_audio_features = torch.cat(gathered_audio_features, dim=0)
all_text_features = torch.cat(gathered_text_features, dim=0)
if mlp_loss:
gathered_audio_features_mlp = list(all_audio_features_mlp.chunk(world_size, dim=0))
gathered_text_features_mlp = list(all_text_features_mlp.chunk(world_size, dim=0))
gathered_audio_features_mlp[rank] = audio_features_mlp
gathered_text_features_mlp[rank] = text_features_mlp
all_audio_features_mlp = torch.cat(gathered_audio_features_mlp, dim=0)
all_text_features_mlp = torch.cat(gathered_text_features_mlp, dim=0)
else:
# We gather tensors from all gpus
if gather_with_grad:
all_audio_features = torch.cat(torch.distributed.nn.all_gather(audio_features), dim=0)
all_text_features = torch.cat(torch.distributed.nn.all_gather(text_features), dim=0)
if mlp_loss:
all_audio_features_mlp = torch.cat(torch.distributed.nn.all_gather(audio_features_mlp), dim=0)
all_text_features_mlp = torch.cat(torch.distributed.nn.all_gather(text_features_mlp), dim=0)
else:
gathered_audio_features = [torch.zeros_like(audio_features) for _ in range(world_size)]
gathered_text_features = [torch.zeros_like(text_features) for _ in range(world_size)]
dist.all_gather(gathered_audio_features, audio_features)
dist.all_gather(gathered_text_features, text_features)
if mlp_loss:
gathered_audio_features_mlp = [torch.zeros_like(audio_features_mlp) for _ in range(world_size)]
gathered_text_features_mlp = [torch.zeros_like(text_features_mlp) for _ in range(world_size)]
dist.all_gather(gathered_audio_features_mlp, audio_features_mlp)
dist.all_gather(gathered_text_features_mlp, text_features_mlp)
if not local_loss:
# ensure grads for local rank when all_* features don't have a gradient
gathered_audio_features[rank] = audio_features
gathered_text_features[rank] = text_features
if mlp_loss:
gathered_audio_features_mlp[rank] = audio_features_mlp
gathered_text_features_mlp[rank] = text_features_mlp
all_audio_features = torch.cat(gathered_audio_features, dim=0)
all_text_features = torch.cat(gathered_text_features, dim=0)
if mlp_loss:
all_audio_features_mlp = torch.cat(gathered_audio_features_mlp, dim=0)
all_text_features_mlp = torch.cat(gathered_text_features_mlp, dim=0)
if mlp_loss:
return all_audio_features, all_text_features, all_audio_features_mlp, all_text_features_mlp
else:
return all_audio_features, all_text_features
class ClipLoss(nn.Module):
def __init__(
self,
local_loss=False,
gather_with_grad=False,
cache_labels=False,
rank=0,
world_size=1,
use_horovod=False,
mlp_loss=False,
weight_loss_kappa=0,
):
super().__init__()
self.local_loss = local_loss
self.gather_with_grad = gather_with_grad
self.cache_labels = cache_labels
self.rank = rank
self.world_size = world_size
self.use_horovod = use_horovod
self.mlp_loss = mlp_loss
self.weighted_loss = bool(weight_loss_kappa!=0)
self.weight_loss_kappa = weight_loss_kappa
# cache state
self.prev_num_logits = 0
self.labels = {}
def forward(self, audio_features, text_features, logit_scale_a, logit_scale_t=None, audio_features_mlp=None, text_features_mlp=None):
device = audio_features.device
if self.mlp_loss:
if self.world_size > 1:
all_audio_features, all_text_features, all_audio_features_mlp, all_text_features_mlp = gather_features(
audio_features=audio_features,text_features=text_features,
audio_features_mlp=audio_features_mlp,text_features_mlp=text_features_mlp,
local_loss=self.local_loss,gather_with_grad=self.gather_with_grad,
rank=self.rank,world_size=self.world_size,use_horovod=self.use_horovod,
mlp_loss=self.mlp_loss
)
if self.local_loss:
a_logits_per_audio = logit_scale_a * audio_features @ all_text_features_mlp.T
a_logits_per_text = logit_scale_a * text_features_mlp @ all_audio_features.T
t_logits_per_audio = logit_scale_t * audio_features_mlp @ all_text_features.T
t_logits_per_text = logit_scale_t * text_features @ all_audio_features_mlp.T
else:
a_logits_per_audio = logit_scale_a * all_audio_features @ all_text_features_mlp.T
a_logits_per_text = a_logits_per_audio.T
t_logits_per_audio = logit_scale_t * all_audio_features_mlp @ all_text_features.T
t_logits_per_text = t_logits_per_audio.T
else:
a_logits_per_audio = logit_scale_a * audio_features @ text_features_mlp.T
a_logits_per_text = logit_scale_a * text_features_mlp @ audio_features.T
t_logits_per_audio = logit_scale_t * audio_features_mlp @ text_features.T
t_logits_per_text = logit_scale_t * text_features @ audio_features_mlp.T
# calculated ground-truth and cache if enabled
num_logits = a_logits_per_audio.shape[0]
if self.prev_num_logits != num_logits or device not in self.labels:
labels = torch.arange(num_logits, device=device, dtype=torch.long)
if self.world_size > 1 and self.local_loss:
labels = labels + num_logits * self.rank
if self.cache_labels:
self.labels[device] = labels
self.prev_num_logits = num_logits
else:
labels = self.labels[device]
if not self.weighted_loss:
total_loss = (
F.cross_entropy(a_logits_per_audio, labels) +
F.cross_entropy(a_logits_per_text, labels) +
F.cross_entropy(t_logits_per_audio, labels) +
F.cross_entropy(t_logits_per_text, labels)
) / 4
else:
audio_weight = (audio_features@audio_features.T).detach()
audio_weight = (torch.exp(torch.sum(audio_weight, axis=1)/(self.weight_loss_kappa*len(audio_weight)))).detach()
text_weight = (text_features@text_features.T).detach()
text_weight = (torch.exp(torch.sum(text_weight, axis=1)/(self.weight_loss_kappa*len(text_features)))).detach()
total_loss = (
F.cross_entropy(a_logits_per_audio, labels, weight=audio_weight) +
F.cross_entropy(a_logits_per_text, labels, weight=audio_weight) +
F.cross_entropy(t_logits_per_audio, labels, weight=text_weight) +
F.cross_entropy(t_logits_per_text, labels, weight=text_weight)
) / 4
else:
if self.world_size > 1:
all_audio_features, all_text_features = gather_features(
audio_features=audio_features,text_features=text_features,
local_loss=self.local_loss,gather_with_grad=self.gather_with_grad,
rank=self.rank,world_size=self.world_size,use_horovod=self.use_horovod,
mlp_loss=self.mlp_loss
)
if self.local_loss:
logits_per_audio = logit_scale_a * audio_features @ all_text_features.T
logits_per_text = logit_scale_a * text_features @ all_audio_features.T
else:
logits_per_audio = logit_scale_a * all_audio_features @ all_text_features.T
logits_per_text = logits_per_audio.T
else:
logits_per_audio = logit_scale_a * audio_features @ text_features.T
logits_per_text = logit_scale_a * text_features @ audio_features.T
# calculated ground-truth and cache if enabled
num_logits = logits_per_audio.shape[0]
if self.prev_num_logits != num_logits or device not in self.labels:
labels = torch.arange(num_logits, device=device, dtype=torch.long)
if self.world_size > 1 and self.local_loss:
labels = labels + num_logits * self.rank
if self.cache_labels:
self.labels[device] = labels
self.prev_num_logits = num_logits
else:
labels = self.labels[device]
if not self.weighted_loss:
total_loss = (
F.cross_entropy(logits_per_audio, labels) +
F.cross_entropy(logits_per_text, labels)
) / 2
else:
audio_weight = (all_audio_features@all_audio_features.T).detach()
audio_weight = (torch.exp(torch.sum(audio_weight, axis=1)/(self.weight_loss_kappa*len(all_audio_features)))).detach()
text_weight = (all_text_features@all_text_features.T).detach()
text_weight = (torch.exp(torch.sum(text_weight, axis=1)/(self.weight_loss_kappa*len(all_text_features)))).detach()
total_loss = (
F.cross_entropy(logits_per_audio, labels, weight=text_weight) +
F.cross_entropy(logits_per_text, labels, weight=audio_weight)
) / 2
return total_loss
def lp_gather_features(
pred,
target,
world_size=1,
use_horovod=False
):
if use_horovod:
assert hvd is not None, 'Please install horovod'
with torch.no_grad():
all_preds = hvd.allgather(pred)
all_targets = hvd.allgath(target)
else:
gathered_preds = [torch.zeros_like(pred) for _ in range(world_size)]
gathered_targets = [torch.zeros_like(target) for _ in range(world_size)]
dist.all_gather(gathered_preds, pred)
dist.all_gather(gathered_targets, target)
all_preds = torch.cat(gathered_preds, dim=0)
all_targets = torch.cat(gathered_targets, dim=0)
return all_preds, all_targets
def get_map(pred, target):
pred = torch.sigmoid(pred).numpy()
target = target.numpy()
return np.mean(average_precision_score(target, pred, average=None))
def get_acc(pred, target):
pred = torch.argmax(pred,1).numpy()
target = torch.argmax(target,1).numpy()
return accuracy_score(target, pred)
def get_mauc(pred, target):
pred = torch.sigmoid(pred).numpy()
target = target.numpy()
return np.mean(roc_auc_score(target, pred, average=None))
class LPMetrics(object):
def __init__(self, metric_names = ['map','acc','mauc']):
self.metrics = []
for name in metric_names:
self.metrics.append(self.get_metric(name))
self.metric_names = metric_names
def get_metric(self,name):
if name == 'map':
return get_map
elif name == 'acc':
return get_acc
elif name == 'mauc':
return get_mauc
else:
raise ValueError(f'the metric should be at least one of [map, acc, mauc]')
def evaluate_mertics(self, pred, target):
metric_dict = {}
for i in range(len(self.metric_names)):
metric_dict[self.metric_names[i]] = self.metrics[i](pred, target)
return metric_dict
def calc_celoss(pred, target):
target = torch.argmax(target, 1).long()
return nn.CrossEntropyLoss()(pred, target)
class LPLoss(nn.Module):
def __init__(self, loss_name):
super().__init__()
if loss_name == 'bce':
self.loss_func = nn.BCEWithLogitsLoss()
elif loss_name == 'ce':
self.loss_func = calc_celoss
elif loss_name == 'mse':
self.loss_func = nn.MSELoss()
else:
raise ValueError(f'the loss func should be at least one of [bce, ce, mse]')
def forward(self, pred, target):
loss = self.loss_func(pred, target)
return loss